

NUOVI PRODOTTI 2023-1

NUOVA GESTIONE DEL BOX CATALOGHI

COME SOSTITUIRE I CATALOGHI "NUOVI PRODOTTI"

NOTE:

- 1 Il catalogo "Nuovi Prodotti 2022-1 N031" è stato integrato nel catalogo "Nuovi Prodotti 2022-2 N032".
- 2 Il catalogo "Nuovi Prodotti 2023-1 N033" sarà integrato nel catalogo "Nuovi Prodotti 2023 N034".
- 3 Il catalogo "Nuovi Prodotti 2024-1 N035" sarà integrato nel catalogo "Nuovi Prodotti 2024 N036".
- ✓ I cataloghi "Nuovi Prodotti" annuali (ad esempio N032, N034, ecc.) andranno ad integrare il CATALOGO GENERALE esistente.
- Il catalogo "Nuovi Prodotti" che termina con -1 potrà essere smaltito dopo la pubblicazione del catalogo "Nuovi Prodotti" annuale.

TRANSIZIONE AL PROSSIMO CATALOGO GENERALE

NOTE:

✓ I cataloghi "Nuovi Prodotti" annuali (ad esempio N032, N034, ecc.) saranno integrati nel nuovo CATALOGO GENERALE.

NEW

NUOVI PRODOTTI 2023-1

UNA PANORAMICA SU NUOVI PRODOTTI ED ESPANSIONI DI SERIE

Mitsubishi Materials si concentra costantemente sulle esigenze dei clienti per affrontare al meglio le sfide dell'industria metalmeccanica moderna. Questo catalogo presenta tutti i nuovi prodotti e le espansioni di serie degli utensili DIAEDGE per applicazioni di tornitura, fresatura e foratura.

ATTUALI, INNOVATIVI, COMPETITIVI

NOTE: Questo catalogo "Nuovi Prodotti 2023-1 (N033)" va ad integrare il Catalogo Generale C009 e il catalogo "Nuovi Prodotti 2022-2 (N032)".

Qui sono contenuti tutti i nuovi prodotti e le espansioni di serie lanciati dopo l'uscita del catalogo N032 e del catalogo C009.

Ci riserviamo il diritto di apportare modifiche alle informazioni e illustrazioni inerenti

a qualsiasi articolo del presente catalogo (ad esempio i dati tecnici, la costruzione, l'equipaggiamento fornito, il materiale e l'aspetto esterno).

È possibile visualizzare l'ultima versione di questo catalogo sul nostro microsito: www.mmc-hardmetal.com

INDICE

UTENSILI DI TORNITURA

SERIE MC5100

Gradi con rivestimento CVD per la lavorazione della ghisa. Ideali dal taglio ad alta velocità fino a quello interrotto.

6

GY

2022-2 Inserti GY da 1.2 mm e utensile monoblocco per le lavorazioni di precisione di piccoli particolari. Inserti GY 1.5 mm/2.0 mm/2.5 mm/3.0 mm con angoli di inclinazione di 8° e 15°.

MS7025

2022-2 Grado PVD per acciai inossidabili adatto alla lavorazione di particolari ad alta precisione di piccole dimensioni su macchine a fantina mobile.

BC8220

Grado PCBN per tornitura generica di acciai temprati.

Nuovo rompitruciolo BR per un eccellente controllo del truciolo durante la finitura, il taglio degli strati cementati, le lavorazioni a profondità elevate e le lavorazioni di materiali con strati alternati duri e morbidi fino ad 1 mm di ap.

MP/MT9000

2022-1 Gamma inserti ISO per tornitura di materiali difficili da lavorare.
Espansione inserti positivi a 7 gradi per la tornitura ISO-S nel grado PVD MP9025.

GW

2022-1 Espansione del sistema GW con supporto monoblocco ed inserti di larghezza 2.39 mm. Sono disponibili diversi rompitruciolo con angolo di attacco di 5° e 8°.

FRESE INTEGRALI

SERIE MP

2023-1

MP3C – Per una lavorazione degli smussi altamente efficiente, con una lunga durata dell'utensile.

2

VQ SERIES

2022-2 2022-1 VQJCS/VQLCS – Nuova fresa integrale con rompitruciolo e geometria irregolare dei taglienti. VQN4/6MVRB – Fresa integrale torica per la lavorazione di leghe a base Ni.

2022-2 iM)

iMX-C6HV-C - Testina torica con foro centrale per refrigerante, 6 eliche, elica irregolare.

2022-1 **VFF**

Espansione VFR2XLB - Ideali per la finitura in applicazioni profonde (cavità).

FRESE AD INSERTI

NEW 2023-1

AXD

AXD4000 – Nuova tipologia con attacco a vite per la lavorazione ad alta velocità di leghe di alluminio e titanio.

28

SERIE WWX

WWX200 - Un nuovo livello di versatilità.

NEW Fresa per spianatura a 90° ad alte prestazioni con nuove dimensioni ridotte 09, 2023-1 inserti trigonali bilaterali.

39

WWX400 – Ampliamento della gamma di inserti con rompitruciolo M. Include raggi inserto di grandi dimensioni (RE 1.6/2.0 mm) e anche nuovi inserti raschianti.

WSF406W

2022-2 Nuovo rompitruciolo M e raschiante.

2022-1 Inserto bilaterale con geometria positiva per una bassa resistenza al taglio.Taglio di ghisa ad alta efficienza.

AJX

2022-1 Nuove tipologie a passo extrafitto con attacco a manicotto, a vite e cilindrico. Espansione della fresatura multifunzionale.

UTENSILI DI FORATURA

DSAS

2022-2 Aggiunta di nuove misure alla serie di punte in metallo duro con fori interni per il refrigerante idonee ai materiali HRSA.

MINI DVAS

2022-2 Serie di punte TRISTAR in metallo duro. Veloci, affidabili e precise.

GRADI RIVESTITI CVD PER LA TORNITURA DI GHISA PER TAGLIO AD ALTA VELOCITÀ E TAGLIO INTERROTTO

Per saperne di più...

B269

www.mhg-mediastore.net

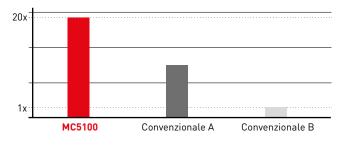
GRADI RIVESTITI CVD PER LA TORNITURA DI GHISA

UNA SELEZIONE DI GRADI DIVERSI PERFETTAMENTE ADATTI A TUTTI I TIPI DI LAVORAZIONE DELLA GHISA

Il processo di fusione del ferro permette di formare geometrie complesse nel componente che viene prodotto. Tipi differenti di ghisa generano trucioli diversi durante la lavorazione e possono causare vari tipi di danni a un inserto. Le forme complesse prodotte nelle fusioni creano delle sfide, perché il contatto con il pezzo da lavorare può passare improvvisamente da un taglio continuo ad uno interrotto. Per affrontare queste sfide, Mitsubishi Materials ha prodotto una serie di gradi con cui è possibile effettuare lavorazioni su tutti i tipi di ghisa e tutte le geometrie di particolari senza problemi.

MORFOLOGIA DEI TRUCIOLI DI GHISA

Tipo a truciolo continuo


Tipo a truciolo spezzato

TECNOLOGIA "SUPER" NANO TEXTURE

La tecnologia Nano Texture è stata migliorata e sviluppata per diventare lo standard leader del settore dei rivestimenti Al₀O₀ con crescita dei cristalli orientata. Questa tecnologia Super Nano Texture migliora la durata dell'inserto e la resistenza all'usura, grazie al processo ottimizzato di crescita dei cristalli.

DISPOSIZIONE ORIENTATA DEI CRISTALLI

Rapporto dei grani di cristallo di Al₂O₃ con lo stesso orientamento

"Super" Nano Texture

Nano Texture

Inserti con rivestimento CVD convenzionale

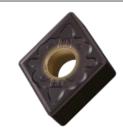
L'uniformità della direzione di crescita è notevolmente migliorata. L'uniformità della dimensione dei grani e della direzione di crescita è migliorata.

La dimensione dei grani e la direzione di crescita non sono uniformi.

GRADI RIVESTITI CVD PER LA TORNITURA DI GHISA

MC5105

PER IL TAGLIO AD ALTA VELOCITÀ DI GHISA GRIGIA


Garantisce un'eccezionale resistenza all'usura durante la tornitura di ghisa grigia a velocità di taglio fino a 1000 m/min.

MC5115

IL GRADO PIÙ ADATTO PER LA GHISA SFEROIDALE

Impedisce danni anormali del tagliente e offre una straordinaria resistenza all'usura e alla frattura durante la lavorazione di ghisa sferoidale.

MC5125

PER TAGLIO FORTEMENTE INTERROTTO DELLA GHISA SFEROIDALE

Garantisce un'eccellente resistenza alla scheggiatura per affrontare tagli fortemente interrotti di ghisa sferoidale altamente resistente.

STRATI TOUGH E SUB GRIP PER GRADI PER GHISA SFEROIDALE

L'elevata capacità di adesione tra gli strati del rivestimento (1,3 volte maggiore) evita la delaminazione durante la lavorazione di ghisa sferoidale.

L'adesione è 1,3 volte* maggiore!

TOUGH GRIP

L'interfaccia tra gli strati è controllata a livello "nano", consentendo massima aderenza dello strato TOUGH Grip per evitare la delaminazione.

SUB GRIP

Aumentando il livello di adesione tra il substrato in metallo duro e lo strato del rivestimento, è stato sviluppato un rivestimento resistente alla delaminazione anche nelle lavorazioni fortemente intermittenti.

DAGLI SVILUPPATORI

Poiché la ghisa grigia viene tendenzialmente lavorata ad alte velocità ($500-1000 \, \text{m/min}$), è importante rendere il rivestimento in film Al_2O_3 il più resistente possibile per prevenire l'usura. La formazione di cristalli e il miglioramento dello strato intermedio del rivestimento hanno rappresentato aspetti centrali. Il rivestimento è stato anche adattato per garantire prestazioni eccellenti nel taglio interrotto nonostante l'uso di un substrato in metallo ancora più duro rispetto ai prodotti tradizionali.

La lavorazione della ghisa sferoidale avviene a velocità relativamente basse (100–300 m/min) e il TiCN presenta una maggiore durezza.

In merito alle prestazioni nel taglio interrotto era difficile individuare la causa della scheggiatura del tagliente, ma l'indagine ha rivelato che questa era dovuta alla delaminazione del rivestimento, ed è stato quindi introdotto uno strato a maggior adesione.

La serie MC5100 è stata ampliata e include ora gradi ideali per ogni tipo di tornitura di ghisa. Questi gradi diventeranno uno strumento fondamentale per i clienti che lavorano materiali di ghisa.

^{*}Rispetto ai gradi convenzionali di Mitsubishi Materials.

MC5105

PER IL TAGLIO AD ALTA VELOCITÀ DI GHISA GRIGIA

Maggiore durezza e una straordinaria resistenza all'usura.

····· Uno spesso strato di rivestimento superiore.

••••• Strato intermedio adatto al taglio ad alta velocità.

Substrato in metallo duro Il substrato è composto da un materiale in metallo a elevata durezza.

MC5115

IL GRADO PIÙ ADATTO PER LA GHISA SFEROIDALE

Resistenza agli impatti e durata eccellenti.

•••••• Strato in Al_2O_3 con un'eccellente resistenza all'usura.

•••••• Strato intermedio con microstruttura ideale per la ghisa sferoidale.

••••• Spesso strato in TiCN in grado di affrontare la durezza della ghisa sferoidale.

••••••• Nuovo strato adesivo con resistenza alla delaminazione migliorata.

MC5125

PER TAGLIO FORTEMENTE INTERROTTO DELLA GHISA SFEROIDALE

Stabilità e resistenza alla frattura eccellenti.

••••• Strato in Al₂O₃ con un'eccellente resistenza all'usura.

•••••• Strato intermedio con microstruttura ideale per la ghisa sferoidale.

•••••• Strato di TiCN con durezza necessaria per il taglio fortemente interrotto.

••••••• Nuovo strato adesivo con resistenza alla delaminazione migliorata.

SERIE MC5100: COME ORIENTARSI NELLA SCELTA

GHISA GRIGIA

MC5105 è la prima scelta per la lavorazione ad alta velocità della ghisa grigia.

Per ottimizzare la vita utile dell'utensile e ridurre l'usura è necessario il rompitruciolo adatto.

MC5115 è anche in grado di effettuare lavorazioni in modo affidabile a velocità di 100-300 m/min e in condizioni di taglio instabili.

TAGLIO AD ALTA VELOCITÀ A 200-1000 M/MIN

MC5105

Sostituire con un rompitruciolo con geometria del tagliente più resistente.

In caso di frattura

VELOCITÀ DI TAGLIO DI 100-300 M/MIN

MC5115

Sostituire con un rompitruciolo con geometria del tagliente più affilata.

In caso di frattura

GHISA SFEROIDALE

MC5115 è la prima scelta per la ghisa sferoidale, compresa quella ad elevata resistenza.

Per prevenire la rottura e l'usura occorre selezionare un rompitruciolo adatto.

MC5125 è efficace anche in condizioni di taglio di sgrossatura, interrotto e instabile.

PRIMA SCELTA

MC5115

Sostituire con un rompitruciolo con geometria del tagliente più resistente.

In caso di usura

TAGLIO DI SGROSSATURA E INTERROTTO

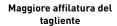
MC5125

Sostituire con un rompitruciolo con geometria del tagliente più affilata.

In caso di usura

GHISA GRIGIA

GHISA SFEROIDALE


Taglio medio	Taglio pesante	Sgrossatura		Taglio leggero	Taglio medio	Taglio pesante	Sgrossatura
MK MC5105	RK MC5105	MC5105	•	LK MC5115	MK MC5115	RK MC5115	MC5115
MK MC5105	RK MC5105	MC5105		LK MC5115	MK MC5115	RK MC5115	MC5115
MK MC5105 MC5115	RK MC5105 MC5115	MC5105 MC5115	#	LK MC5125	MK MC5125	RK MC5125	MC5125

SISTEMA ROMPITRUCIOLO PER LA TORNITURA DELLA GHISA

L'intera gamma dei nuovi rompitrucioli è stata progettata sfruttando le proprietà dei nuovi gradi. Ogni rompitruciolo è specificatamente adatto per la relativa applicazione.

SCELTA DEL ROMPITRUCIOLO IN BASE ALLE CONDIZIONI DI LAVORAZIONE

Taglio stabile (taglio continuo, senza crosta, ecc.)/Lavorazioni con bassa resistenza al taglio

INSERTI NEGATIVI

Rompitruciolo LK

La spoglia positiva garantisce un tagliente affilato e bassa resistenza al taglio.

Rompitruciolo MA

La spoglia positiva garantisce un tagliente affilato.

Rompitruciolo MK

Ottimo equilibrio tra affilatura ed elevata resistenza del tagliente, per uso generico.

Rompitruciolo RK

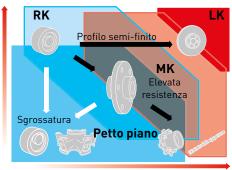
La spoglia con fase ampia fase neutra assicura un tagliente stabile per lavorazioni con taglio interrotto e la rimozione di crosta.

Rompitruciolo GK

Rompitruciolo standard versatile. La fase neutra mantiene un tagliente stabile.

Petto piano

Petto piano per un'elevata resistenza del tagliente.



Maggiore resistenza del tagliente

Taglio instabile (taglio interrotto, con crosta, ecc.)/Da taglio generico a taglio di sgrossatura

MAPPA DELLE APPLICAZIONI PER GHISA

Forza di bloccaggio elevata, particolari robusti

Rigidità del componente

Forza di bloccaggio ridotta, particolari sottili

CNMG, CNMA

INSERTI NEGATIVI (CON FORO)

Classe M

Codice di ordinazione	(L) (M)	MC5105	MC5115	MC5125	IC	s	RE	D 1	~	Geometria
CNMG120404-LK	L		•	*	12.7	4.76	0.4	5.16		
CNMG120408-LK	L		•	*	12.7	4.76	0.8	5.16		
CNMG120412-LK	L		•	*	12.7	4.76	1.2	5.16	SCA	
CNMG120404-MA	M		•	•	12.7	4.76	0.4	5.16		
CNMG120408-MA	M		•	•	12.7	4.76	0.8	5.16		
CNMG120412-MA	М		•	•	12.7	4.76	1.2	5.16		
CNMG120416-MA	M		•	*	12.7	4.76	1.6	5.16		
CNMG160608-MA	М		•	•	15.875	6.35	0.8	6.35	6	
CNMG160612-MA	M		•	•	15.875	6.35	1.2	6.35		
CNMG160616-MA	М		•	*	15.875	6.35	1.6	6.35		
CNMG120404-MK	М	•	•	•	12.7	4.76	0.4	5.16		
CNMG120408-MK	М	•	•	•	12.7	4.76	0.8	5.16		
CNMG120412-MK	М	•	•	•	12.7	4.76	1.2	5.16		
CNMG120416-MK	М	*	•	•	12.7	4.76	1.6	5.16		
CNMG160608-MK	М	*	•	*	15.875	6.35	0.8	6.35		
CNMG160612-MK	М	•	•	•	15.875	6.35	1.2	6.35		
CNMG160616-MK	М	•	•	*	15.875	6.35	1.6	6.35		
CNMG190612-MK	М	*			19.05	6.35	1.2	7.93		25
CNMG190616-MK	М	*			19.05	6.35	1.6	7.93	•	RE
CNMG120404-GK	М		•	•	12.7	4.76	0.4	5.16		
CNMG120408-GK	М		•	•	12.7	4.76	0.8	5.16		
CNMG120412-GK	М		•	•	12.7	4.76	1.2	5.16		† 5
CNMG120416-GK	М		•	*	12.7	4.76	1.6	5.16		IC S
CNMG160612-GK	М		•	*	15.875	6.35	1.2	6.35		80°
CNMG160616-GK	М		•	*	15.875	6.35	1.6	6.35	•	
CNMG120408-RK	R	•	•	•	12.7	4.76	0.8	5.16		
CNMG120412-RK	R	•	•	•	12.7	4.76	1.2	5.16		
CNMG120416-RK	R	•	•	•	12.7	4.76	1.6	5.16		
CNMG160608-RK	R	*	•	*	15.875	6.35	0.8	6.35		
CNMG160612-RK	R	•	•	•	15.875	6.35	1.2	6.35	10000	
CNMG160616-RK	R	•	•	•	15.875	6.35	1.6	6.35		
CNMG190612-RK	R	*			19.05	6.35	1.2	7.93		
CNMG190616-RK	R	*			19.05	6.35	1.6	7.93		
CNMA120404	R	•	•	•	12.7	4.76	0.4	5.16		
CNMA120408	R	•	•	•	12.7	4.76	0.8	5.16		
CNMA120412	R	•	•	•	12.7	4.76	1.2	5.16		
CNMA120416	R	•	•	•	12.7	4.76	1.6	5.16		
CNMA160612	R	•	•	•	15.875	6.35	1.2	6.35		
CNMA160616	R	•	•	•	15.875	6.35	1.6	6.35		
CNMA190612	R	•			19.05	6.35	1.2	7.93		
CNMA190616	R	•			19.05	6.35	1.6	7.93		
CNMA190624	R	•			19.05	6.35	2.4	7.93		

DNMG, DNMA

INSERTI NEGATIVI (CON FORO)

Classe M

Codice di ordinazione		MC5105	MC5115	MC5125	IC	S	RE	D 1	Geometria
DNMG110408-LK	L		•	*	9.525	4.76	0.8	3.81	
DNMG150404-LK	L		•	*	12.7	4.76	0.4	5.16	
DNMG150408-LK	L		•	*	12.7	4.76	0.8	5.16	
DNMG150412-LK	L		*	*	12.7	4.76	1.2	5.16	
DNMG150604-LK	L		•	*	12.7	6.35	0.4	5.16	
DNMG150608-LK	L		•	*	12.7	6.35	0.8	5.16	
DNMG150612-LK	L		•	*	12.7	6.35	1.2	5.16	
DNMG150404-MA	М		•	*	12.7	4.76	0.4	5.16	-
DNMG150408-MA	М		•	•	12.7	4.76	0.8	5.16	
DNMG150412-MA	М		*	*	12.7	4.76	1.2	5.16	
DNMG150604-MA	М		•	*	12.7	6.35	0.4	5.16	
DNMG150608-MA	М		•	•	12.7	6.35	0.8	5.16	
DNMG150612-MA	М		•	•	12.7	6.35	1.2	5.16	_
DNMG110408-MK	М	*	•	•	9.525	4.76	0.8	3.81	-
DNMG150404-MK	М	•	•	*	12.7	4.76	0.4	5.16	
DNMG150408-MK	М	•	•	•	12.7	4.76	0.8	5.16	, RE
DNMG150412-MK	М	•	•	*	12.7	4.76	1.2	5.16	↓ P ¶
DNMG150604-MK	М	•	•	•	12.7	6.35	0.4	5.16	5 +
DNMG150608-MK	М	•	•	•	12.7	6.35	0.8	5.16	
DNMG150612-MK	М	•	•	•	12.7	6.35	1.2	5.16	55
DNMG150404-GK	М		•	*	12.7	4.76	0.4	5.16	- /
DNMG150408-GK	М		•	*	12.7	4.76	0.8	5.16	
DNMG150412-GK	М		•	*	12.7	4.76	1.2	5.16	
DNMG150604-GK	М		•	*	12.7	6.35	0.4	5.16	
DNMG150608-GK	М		•	•	12.7	6.35	0.8	5.16	
DNMG150612-GK	М		•	*	12.7	6.35	1.2	5.16	 _
DNMG150408-RK	R	•	•	*	12.7	4.76	0.8	5.16	
DNMG150412-RK	R	•	•	*	12.7	4.76	1.2	5.16	
DNMG150608-RK	R	•	•	•	12.7	6.35	0.8	5.16	
DNMG150612-RK	R	•	•	•	12.7	6.35	1.2	5.16	_
DNMA150404	R	•	•	*	12.7	4.76	0.4	5.16	
DNMA150408	R	•	•	*	12.7	4.76	0.8	5.16	
DNMA150412	R	•	•	*	12.7	4.76	1.2	5.16	
DNMA150604	R	•	•	*	12.7	6.35	0.4	5.16	
DNMA150608	R	•	•	•	12.7	6.35	0.8	5.16	
DNMA150612	R	•	•	•	12.7	6.35	1.2	5.16	

SNMG, SNMA

INSERTI NEGATIVI (CON FORO)

Classe M

Codice di ordinazione		MC5105	MC5115	MC5125	IC	S	RE	D1		Geometria
SNMG120408-LK	L		•	*	12.7	4.76	0.8	5.16		
SNMG120412-LK	L		•	*	12.7	4.76	1.2	5.16		
SNMG120404-MA	М		•	*	12.7	4.76	0.4	5.16		
SNMG120408-MA	М		•	*	12.7	4.76	0.8	5.16		
SNMG120412-MA	М		•	*	12.7	4.76	1.2	5.16		
SNMG120416-MA	М		•	*	12.7	4.76	1.6	5.16	RECEIPT DE	
SNMG150612-MA	М		•	•	15.875	6.35	1.2	6.35		
SNMG120408-MK	М	•	•	*	12.7	4.76	0.8	5.16		
SNMG120412-MK	М	•	•	*	12.7	4.76	1.2	5.16		
SNMG120416-MK	М	*	•	*	12.7	4.76	1.6	5.16		
SNMG150612-MK	М	*	•	*	15.875	6.35	1.2	6.35		
SNMG150616-MK	М	*	•	*	15.875	6.35	1.6	6.35	200	
SNMG190612-MK	М	*			19.05	6.35	1.2	7.93		l ∡ RE
SNMG190616-MK	М	*			19.05	6.35	1.6	7.93		, D
SNMG120404-GK	М		•	*	12.7	4.76	0.4	5.16		
SNMG120408-GK	М		•	•	12.7	4.76	0.8	5.16		
SNMG120412-GK	М		•	•	12.7	4.76	1.2	5.16		
SNMG120416-GK	М		•	*	12.7	4.76	1.6	5.16		
SNMG150612-GK	М		•	*	15.875	6.35	1.2	6.35		IC S
SNMG120408-RK	R	•	•	*	12.7	4.76	0.8	5.16		
SNMG120412-RK	R	•	•	•	12.7	4.76	1.2	5.16		
SNMG120416-RK	R	•	•	*	12.7	4.76	1.6	5.16	500	
SNMG150612-RK	R	*	•	*	15.875	6.35	1.2	6.35		
SNMG150616-RK	R	*	•	*	15.875	6.35	1.6	6.35	500	
SNMG190612-RK	R	*			19.05	6.35	1.2	7.93		
SNMG190616-RK	R	*			19.05	6.35	1.6	7.93		
SNMA090308	R	*	*	*	9.525	3.18	0.8	3.81		
SNMA120408	R	•	•	*	12.7	4.76	0.8	5.16		
SNMA120412	R	•	•	•	12.7	4.76	1.2	5.16		
SNMA120416	R	•	•	•	12.7	4.76	1.6	5.16		
SNMA150612	R	•	•	*	15.875	6.35	1.2	6.35		
SNMA150616	R	•	•	•	15.875	6.35	1.6	6.35		
SNMA190612	R	•			19.05	6.35	1.2	7.93		
SNMA190616	R	•			19.05	6.35	1.6	7.93		

TNMG, TNMA

INSERTI NEGATIVI (CON FORO)

Classe M

Codice di ordinazione		MC5105	MC5115	MC5125	IC	S	RE	D1		Geometria
TNMG160404-LK	L		•	*	9.525	4.76	0.4	3.81		
TNMG160408-LK	L		•	*	9.525	4.76	0.8	3.81		
TNMG160412-LK	L		•	*	9.525	4.76	1.2	3.81		
TNMG160404-MA	М		•	*	9.525	4.76	0.4	3.81		
TNMG160408-MA	М		•	•	9.525	4.76	0.8	3.81		
TNMG160412-MA	М		•	•	9.525	4.76	1.2	3.81		
TNMG160416-MA	М		•	*	9.525	4.76	1.6	3.81		
TNMG220408-MA	М		*	*	12.7	4.76	0.8	5.16		
TNMG220412-MA	М		*	*	12.7	4.76	1.2	5.16		
TNMG220416-MA	М		•	•	12.7	4.76	1.6	5.16	-	
TNMG160404-MK	М	•	•	*	9.525	4.76	0.4	3.81		
TNMG160408-MK	М	•	•	•	9.525	4.76	0.8	3.81	•	
TNMG160412-MK	М	•	•	*	9.525	4.76	1.2	3.81		
TNMG220408-MK	М	*	•	*	12.7	4.76	0.8	5.16		
TNMG220412-MK	М	*	*	*	12.7	4.76	1.2	5.16		_{lør} RE
TNMG220416-MK	М	*	*	*	12.7	4.76	1.6	5.16		
TNMG160404-GK	М		•	*	9.525	4.76	0.4	3.81		
TNMG160408-GK	М		•	•	9.525	4.76	0.8	3.81		
TNMG160412-GK	М		•	*	9.525	4.76	1.2	3.81		
TNMG160416-GK	М		•	*	9.525	4.76	1.6	3.81		
TNMG220408-GK	М		•	*	12.7	4.76	0.8	5.16		IC S
TNMG220412-GK	М		*	*	12.7	4.76	1.2	5.16		
TNMG160408-RK	R	•	•	•	9.525	4.76	0.8	3.81		
TNMG160412-RK	R	•	•	•	9.525	4.76	1.2	3.81		
TNMG160416-RK	R	•	•	*	9.525	4.76	1.6	3.81		
TNMG220408-RK	R	•	•	*	12.7	4.76	0.8	5.16		
TNMG220412-RK	R	•	•	*	12.7	4.76	1.2	5.16		
TNMG220416-RK	R	•	•	*	12.7	4.76	1.6	5.16		
TNMA160404	R	•	•	*	9.525	4.76	0.4	3.81		
TNMA160408	R	•	•	•	9.525	4.76	0.8	3.81		
TNMA160412	R	•	•	•	9.525	4.76	1.2	3.81		
TNMA160416	R	•	•	•	9.525	4.76	1.6	3.81		
TNMA160420	R	*	*	*	9.525	4.76	2.0	3.81		
TNMA220408	R	•	•	*	12.7	4.76	0.8	5.16		
TNMA220412	R	•	•	*	12.7	4.76	1.2	5.16		
TNMA220416	R	•	•	•	12.7	4.76	1.6	5.16		

VNMG, WNMG, WNMA

INSERTI NEGATIVI (CON FORO)

Classe M

Codice di ordinazione		MC5105	MC5115	MC5125	IC	s	RE	D1		Geometria
VNMG160404-LK	L		•	*	9.525	4.76	0.4	3.81		
VNMG160408-LK	L		•	*	9.525	4.76	0.8	3.81		
VNMG160404-MA	М		•	*	9.525	4.76	0.4	3.81		
VNMG160408-MA	М		•	*	9.525	4.76	0.8	3.81		
VNMG160404-MK	М	•	•	*	9.525	4.76	0.4	3.81		, RE
VNMG160408-MK	М	•	•	•	9.525	4.76	0.8	3.81		
VNMG160412-MK	М	•	•	•	9.525	4.76	1.2	3.81		
VNMG160404-GK	М		•	*	9.525	4.76	0.4	3.81		35° IC S
VNMG160408-GK	М		•	*	9.525	4.76	0.8	3.81	(A)	\
VNMG160412-GK	М		•	*	9.525	4.76	1.2	3.81		
VNMA160404	R	*	•	*	9.525	4.76	0.4	3.81		
VNMA160408	R	*	•	•	9.525	4.76	0.8	3.81	0	
VNMA160412	R	*	•	*	9.525	4.76	1.2	3.81		
WNMG080404-LK	L		•	*	12.7	4.76	0.4	5.16		
WNMG080408-LK	L		•	*	12.7	4.76	0.8	5.16		
WNMG080412-LK	L		•	*	12.7	4.76	1.2	5.16		
WNMG060408-MA	М		•	•	9.525	4.76	0.8	3.81		
WNMG060412-MA	М		•	*	9.525	4.76	1.2	3.81	_	
WNMG080404-MA	М		•	*	12.7	4.76	0.4	5.16	8	
WNMG080408-MA	М		•	•	12.7	4.76	0.8	5.16		
WNMG080412-MA	М		•	•	12.7	4.76	1.2	5.16		
WNMG080416-MA	М		•	*	12.7	4.76	1.6	5.16	-	
WNMG080404-MK	М	•	•	*	12.7	4.76	0.4	5.16		
WNMG080408-MK	М	•	•	•	12.7	4.76	0.8	5.16		80°
WNMG080412-MK	М	•	•	•	12.7	4.76	1.2	5.16		
WNMG080416-MK	М	*	•	*	12.7	4.76	1.6	5.16		
WNMG060404-GK	М		*	•	9.525	4.76	0.4	3.81		
WNMG060408-GK	М		•	*	9.525	4.76	0.8	3.81		
WNMG080404-GK	М		•	*	12.7	4.76	0.4	5.16		
WNMG080408-GK	М		•	•	12.7	4.76	0.8	5.16		RÉ IC S
WNMG080412-GK	М		•	•	12.7	4.76	1.2	5.16		
WNMG080416-GK	М		•	*	12.7	4.76	1.6	5.16		
WNMG080408-RK	R	•	•	•	12.7	4.76	0.8	5.16		
WNMG080412-RK	R	•	•	•	12.7	4.76	1.2	5.16		
WNMG080416-RK	R	•	•	•	12.7	4.76	1.6	5.16		
WNMA060408	R	*	•	*	9.525	4.76	0.8	3.81		
WNMA060412	R	*	•	*	9.525	4.76	1.2	3.81		
WNMA080404	R	•	•	*	12.7	4.76	0.4	5.16		
WNMA080408	R	•	•	•	12.7	4.76	0.8	5.16		
WNMA080412	R	•	•	•	12.7	4.76	1.2	5.16		
WNMA080416	R	•	•	*	12.7	4.76	1.6	5.16		

CNMN, SNMN, TNMN

INSERTI NEGATIVI (SENZA FORO)

Classe M

Codice di ordinazione	(L) (M) (R)	MC5105	MC5115	MC5125	IC	S	RE	D1		Geometria
CNMN120408	R	*	•	*	12.7	4.76	0.8	R		l ≱RE
CNMN120412	R	*	•	*	12.7	4.76	1.2	R		
CNMN120416	R	*	•	*	12.7	4.76	1.6	R		
										80° S
SNMN120408	R	*	•	*	12.7	4.76	0.8	R	_	
SNMN120412	R	*	•	•	12.7	4.76	1.2	R		
SNMN120416	R	*	*	*	12.7	4.76	1.6	R		
SNMN120420	R	*	•	*	12.7	4.76	2.0	R		+
										IC S
TNMN160408	R	*	•	*	9.525	4.76	0.8	R		_A RE
TNMN160412	R	*	•	*	9.525	4.76	1.2	R	-	
TNMN160416	R	*	*	•	9.525	4.76	1.6	R		
TNMN160420	R	*	•	*	9.525	4.76	2.0	R		

CCMT, DCMT

INSERTI POSITIVI 7° (CON FORO)

Codice di ordinazione	© ©	MC5105	MC5115	MC5125	IC	S	RE	D1	~	Geometria
CCMT060204-MK	М		•	•	6.35	2.38	0.4	2.8		25
CCMT060208-MK	М		•	*	6.35	2.38	0.8	2.8		RE 5
CCMT09T304-MK	М		•	•	9.525	3.97	0.4	4.4		
CCMT09T308-MK	М		•	•	9.525	3.97	0.8	4.4		
CCMT120404-MK	М		•	*	12.7	4.76	0.4	5.5		IC S 7°
CCMT120408-MK	М		•	•	12.7	4.76	0.8	5.5		80° IC S 7
CCMT120412-MK	М		•	*	12.7	4.76	1.2	5.5		7
DCMT070204-MK	М		•	*	6.35	2.38	0.4	2.8		
DCMT070208-MK	М		•	*	6.35	2.38	0.8	2.8		RE 5
DCMT11T304-MK	М		•	•	9.525	3.97	0.4	4.4		+
DCMT11T308-MK	М		•	•	9.525	3.97	0.8	4.4		70
DCMT150404-MK	М		•	*	12.7	4.76	0.4	5.5		55° S S
DCMT150408-MK	М		•	*	12.7	4.76	0.8	5.5	•	,

CONDIZIONI DI TAGLIO CONSIGLIATE

INSERTI NEGATIVI (PER TORNITURA ESTERNA)

Materiale	Durezza	Condizioni di taglio	Grado	Vc
		•	MC5105	230–700
	OFOMD-	•	MC5105	210-640
	< 350MPa	*	MC5105	195–605
Ghisa grigia		*	MC5115	190–350
I/		•	MC5115	195–365
N .	< 450MPa	•	MC5115	180–330
		*	MC5125	95–190
		•	MC5115	175–325
Ghisa sferoidale	< 800MPa	•	MC5115	160–295
		*	MC5125	85–170

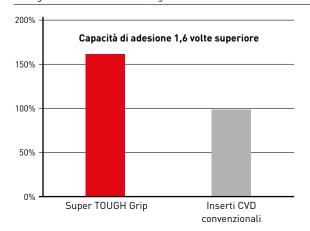
	f	ар
LK	0.10-0.50	0.50-2.50
MK	0.20-0.55	0.50-4.00
MA	0.20-0.50	0.30-4.00
GK	0.25-0.60	1.50-5.00
RK	0.20-0.60	1.50-6.00
Piano	0.20-0.60	2.50-6.00
	MK MA GK RK	MK 0.20-0.55 MA 0.20-0.50 GK 0.25-0.60 RK 0.20-0.60

INSERTI POSITIVI 7º (PER TORNITURA ESTERNA)

Durezza	Condizioni di taglio	Grado	Vc
	•	MC5115	170–320
< 450MPa	•	MC5115	130-250
	*	MC5125	60-130
	•	MC5115	125–240
< 800MPa	•	MC5115	105–200
	*	MC5125	55–115
	< 450MPa 	< 450MPa	 450MPa MC5115 MC5125 MC5115 MC5115 MC5115 MC5115

Gamma di taglio	Rompitruciolo	f	ар
Taglio medio	MK	0.08-0.30	0.30-2.00

ESEMPI DI APPLICAZIONI


MC5105

RESISTENZA ALL'USURA A CONFRONTO SU GHISA GG30 A VELOCITÀ DI TAGLIO DI 1000 M/MIN

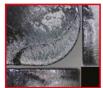
Valutazione della capacità di adesione:

La misura della capacità di adesione si ottiene con una prova di resistenza alla scheggiatura che registra la forza necessaria per rimuovere gli strati del rivestimento.

Materiale	DIN GG30
Utensile	CNMA120412
Vc (m/min)	1.000
f (mm/giro)	0.3
ap (mm)	2.0
Refrigerante	Taglio a secco

MC5100

Convenzionale A


Immagine finale

Dopo 18 minuti di

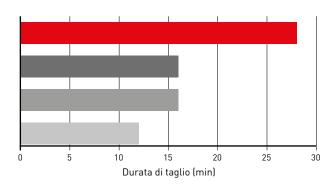
Convenzionale B

Dopo 23 minuti di

Dopo 23 minuti di . lavorazione

. lavorazione

MC5100

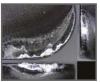

Convenzionale A

Convenzionale B

MC5115

RESISTENZA ALL'USURA A CONFRONTO DURANTE IL TAGLIO CONTINUO SU GHISA GGG70

Materiale	DIN GGG70
Utensile	CNMA120412
Vc (m/min)	250
f (mm/giro)	0.3
ap (mm)	2.0
Refrigerante	Taglio a umido



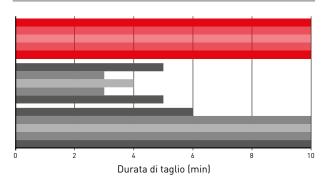
Dopo 16 minuti di lavorazione

MC5100

Dopo 12 minuti di lavorazione

Convenzionale A

Convenzionale B


Convenzionale C

ESEMPI DI APPLICAZIONI

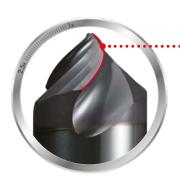
MC5125

RESISTENZA ALLA SCHEGGIATURA A CONFRONTO DOPO 10 PASSATE CON TAGLIO INTERROTTO SU GHISA GGG70

Materiale	DIN GGG70
Utensile	CNMA120412
Vc (m/min)	250
f (mm/giro)	0.3
ap (mm)	2.0
Refrigerante	Taglio a umido

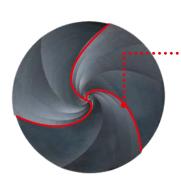
MS PLUS

SERIE DI FRESE INTEGRALI IN METALLO DURO



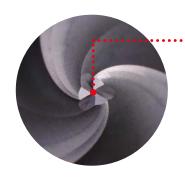
FRESA PER SMUSSI, 3 TAGLIENTI

Fresa a lunga durata per lavorazioni ad alta efficienza di smussi.



TAGLIENTE CON ELICA AFFILATA

L'eccezionale angolo dell'elica garantisce un'ottima affilatura ed elimina la formazione di bave.


L'angolo di smusso è di 45°.

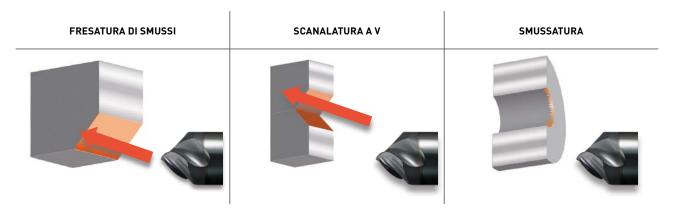
SPECIFICHE DEI 3 TAGLIENTI

La geometria a 3 taglienti assicura una lavorazione ad alto avanzamento con un ottimo equilibrio tra versatilità ed evacuazione dei trucioli.

Si ottiene una lavorazione ad alta efficienza.

TAGLIENTE FINALE

Il tagliente finale può essere utilizzato anche per la lavorazione di scanalature a V.



Lavorazione di scanalature a V

ELEVATA EFFICIENZA PER LA LAVORAZIONE DI SMUSSI

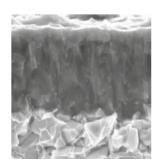
La geometria a 3 taglienti garantisce un elevato avanzamento ed un prolungamento della vita utensile; in aggiunta i taglienti elicoidali eliminano la formazione di bave durante la lavorazione degli smussi.

1. Le punte tipo DLE e GKCD sono raccomandate per la centrinatura.

Materiale da lavorare	JIS S55C
Utensile (mm)	DC = Ø 6
Vc (m/min)	100
n (min ⁻¹)	5300
fz (mm/t.)	0.03
ap (mm)	1.2
Sbalzo utensile (mm)	18
Modalità di taglio	Soffio d'aria

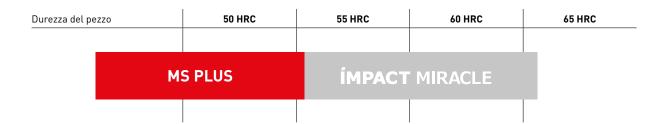
CONFRONTO DELLE BAVE DOPO LA SMUSSATURA NELLA LAVORAZIONE DI MATERIALE S55C

MP3C 3 taglienti elicoidali	Buona finitura delle superfici
Fresa convenzionale 4 taglienti diritti	Formazione di bave
Fresa convenzionale 2 taglienti diritti	Formazione di bave


MS PLUS

SERIE DI FRESE INTEGRALI PER APPLICAZIONI GENERALI

RIVESTIMENTO MULTISTRATO (AI, Ti, Cr)N (MS PLUS)


Avanzata tecnologia di rivestimento multistrato (Al,Ti)N e (Al,Cr)N, che permette di lavorare un'ampia gamma di materiali.

PROPRIETÀ DEL RIVESTIMENTO MULTISTRATO (AI,Ti,Cr)N (MS PLUS)

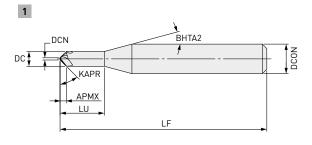
	Multistrato (Al,Ti,Cr)N	(Al,Ti)N	(Al,Cr)N
Durezza (HV)	3200	2800	3100
Temperatura di ossidazione (r)	1100	800	1100
Adesione (N)	100	80	80

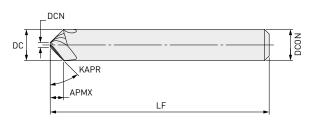
CAMPO DI APPLICAZIONE

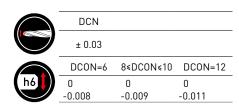
MS PLUS ASSICURA UNA LUNGA DURATA DELL'UTENSILE SU MATERIALI FINO A 55 HRC.

Per acciai più duri di 55 HRC, si consigliano frese a integrali IMPACT MIRACLE.

FRESA PER SMUSSI, 3 TAGLIENTI







- L'angolo dell'elica ottimizzato garantisce un'ottima affilatura ed elimina la formazione di bave.
- Grazie ai 3 taglienti viene garantita una lavorazione ad avanzamento elevato.

Codice ordinazione	Disponibilità	DC	АРМХ	LU	LF	DCON	ZEFP	DCN	Tipo
MP3CD0200	•	2	0.85	6	50	6	3	0.3	1
MP3CD0400	•	4	1.85	12	50	6	3	0.3	1
MP3CD0600	•	6	2.85	_	50	6	3	0.3	2
MP3CD0800	•	8	3.8	_	60	8	3	0.4	2
MP3CD1000	•	10	4.75	_	70	10	3	0.5	2
MP3CD1200	•	12	5.75	_	75	12	3	0.5	2

CONDIZIONI DI TAGLIO RACCOMANDATE

SMUSSATURA DI FORI E SPIGOLI

Materiale	DC	Vc	n	Vf	Smussatura di spigoli	Smussatura di fori
					a	p
	2	100	16000	1400	≤ 0.6	≤ 0.4
	4	100	8000	720	≤ 1.2	≤ 0.8
Acciaio al carbonio, ghisa sferoidale,	6	100	5300	480	≤ 1.8	≤ 1.2
acciaio non legato (C≥0,55%)	8	100	4000	360	≤ 2.4	≤ 1.6
3	10	100	3200	290	≤ 2.5	≤ 2.0
	12	100	2700	240	≤ 2.5	≤ 2.4
	2	70	11000	890	≤ 0.6	≤ 0.4
	4	70	5600	450	≤ 1.2	≤ 0.8
Acciaio legato (325HB)	6	70	3700	300	≤ 1.8	≤ 1.2
(38-45HRC)	8	70	2800	230	≤ 2.4	≤ 1.6
	10	70	2200	180	≤ 2.5	≤ 2.0
	12	70	1900	150	≤ 2.5	≤ 2.4
	2	60	9500	680	≤ 0.6	≤ 0.4
<mark>1</mark>	4	60	4800	350	≤ 1.2	≤ 0.8
Acciaio inossidabile austenitico,	6	60	3200	230	≤ 1.8	≤ 1.2
lega di titanio	8	60	2400	170	≤ 2.4	≤ 1.6
	10	60	1900	140	≤ 2.5	≤ 2.0
	12	60	1600	120	≤ 2.5	≤ 2.4
	2	50	8000	480	≤ 0.6	≤ 0.4
	4	50	4000	240	≤ 1.2	≤ 0.8
Acciaio temprato	6	50	2700	160	≤ 1.8	≤ 1.2
(45–55HRC)	8	50	2000	120	≤ 2.4	≤ 1.6
	10	50	1600	96	≤ 2.5	≤ 2.0
	12	50	1300	78	≤ 2.5	≤ 2.4

^{1.} Per l'acciaio inossidabile austenitico è particolarmente efficace l'utilizzo di un refrigerante idrosolubile.

^{2.} È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.

^{3.} Si possono avere vibrazioni se la rigidità della macchina o del materiale del pezzo da lavorare è bassa. In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.

SCANALATURA A V

Materiale	DC	Vc	n	Vf	ар
	2	80	13000	940	≤ 1.4
	4	80	6400	460	≤ 2.8
Acciaio al carbonio, ghisa sferoidale,	6	80	4200	300	≤ 4.2
acciaio non legato (C>0,55%)	8	80	3200	230	≤ 5.6
3	10	80	2500	180	≤ 7.0
	12	80	2100	150	≤ 8.4
	2	60	9500	620	≤ 1.4
	4	60	4800	310	≤ 2.8
Acciaio legato (325HB)	6	60	3200	210	≤ 4.2
(38-45HRC)	8	60	2400	160	≤ 5.6
	10	60	1900	120	≤ 7.0
	12	60	1600	100	≤ 8.4
	2	50	8000	460	≤ 1.4
<mark>u</mark>	4	50	4000	230	≤ 2.8
Acciaio inossidabile austenitico,	6	50	2700	160	≤ 4.2
lega di titanio	8	50	2000	120	≤ 5.6
5	10	50	1600	92	≤ 7.0
	12	50	1300	75	≤ 8.4
	2	40	6400	310	≤ 1.4
	4	40	3200	150	≤ 2.8
Acciaio temprato	6	40	2100	100	≤ 4.2
(45–55HRC)	8	40	1600	77	≤ 5.6
	10	40	1300	62	≤ 7.0
	12	40	1100	53	≤ 8.4

Per l'acciaio inossidabile austenitico è particolarmente efficace l'utilizzo di un refrigerante idrosolubile.
 È possibile aumentare numero di giri e velocità di avanzamento a fronte di una profondità di taglio minore.
 Si possono avere vibrazioni se la rigidità della macchina o del materiale del pezzo da lavorare è bassa. In questo caso, ridurre proporzionalmente il numero di giri e la velocità di avanzamento.

AXD

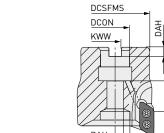
FRESA MULTIFUNZIONE PER LAVORAZIONE AD ALTA VELOCITÀ E AD ALTA EFFICIENZA DI ALLUMINIO E LEGHE DI TITANIO

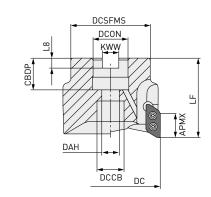
Per saperne di più...

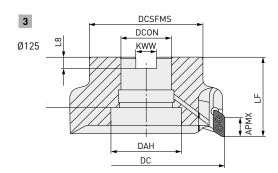
B116
www.mhg-mediastore.net

AXD4000 🗇 🕮 🕮 🥔 🥔

APMX


TIPO A MANICOTTO





СН :0° :+14°-15° A.R R.R :+21°-+26° :+21°-+26° :+14°-+15° 1 Ø40

2 Ø50 Ø63 Ø80 Ø100

DCCB DC

Solo frese destre.

DC	Vite di fissaggio	Geometria					
Ø40	HFF08043H	1	1	2	3		
Ø50, Ø63	HSC10030H			U, II			
Ø80	12035H	2					
Ø100	16040H			 			
Ø125	MBA20040H	3	Ш				

Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	RPMX	WT	ZEFP	Tipo	
TIPO A										
AXD4000-040A02RA	*	15.5	40	16	50	41000	0.3	2	1	
AXD4000-040A03RA	•	15.5	40	16	50	41000	0.3	3	1	
AXD4000-050A02RA	*	15.5	50	22	50	35000	0.4	2	2	
AXD4000-050A04RA	•	15.5	50	22	50	35000	0.4	4	2	
AXD4000A-050A04RD	•	15.5	50	22	50	34000	0.4	4	2	
AXD4000-063A05RA	•	15.5	63	22	50	30000	0.6	5	2	
AXD4000-080A05RA	•	15.5	80	27	50	27000	1.0	5	2	
AXD4000-100A06RA	•	15.5	100	32	63	23000	2.0	6	2	
AXD4000-125B07RA	•	15.5	125	40	63	20000	2.8	7	3	

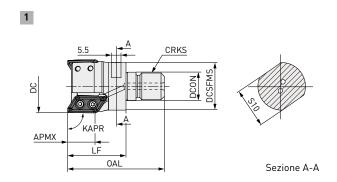
AXD4000

Codice ordinazione	Disponibilità	APMX	DC	DCON	LF	RPMX	WT	ZEFP	Tipo	RE
TIPO B										
AXD4000-40A02RB	*	14.8	40	16	50	41000	0.3	2	1	
AXD4000-40A03RB	•	14.8	40	16	50	41000	0.3	3	1	
AXD4000-50A02RB	*	14.8	50	22	50	35000	0.4	2	2	
AXD4000-50A04RB	•	14.8	50	22	50	35000	0.4	4	2	4.0
AXD4000A-050A04RE	•	14.8	50	22	50	34000	0.4	4	2	-
AXD4000-63A05RB	•	14.8	63	22	50	30000	0.6	5	2	5.0
AXD4000-80A05RB	•	14.8	80	27	50	27000	1.0	5	2	
AXD4000-100A06RB	•	14.8	100	32	63	23000	2.0	6	2	
AXD4000-125B07RB	•	14.8	125	40	63	20000	2.8	7	3	

- 1. Si indica il numero di velocità di mandrino max. consentite per garantire la stabilità dell'utensile e dell'inserto.
- Quando si usa l'utensile ad alte velocità del mandrino, accertarsi che l'utensile e la prolunga siano correttamente bilanciati.
 Nota: per inserto con raggio torico pari o superiore a 1.6, all'aumentare del raggio diminuisce la dimensione LF.
- 4. Le viti di bloccaggio sono parti importanti dal punto di vista della sicurezza. Usare le viti di bloccaggio con il codice corretto. Se la velocità del mandrino è pari o superiore ai valori mostrati in Tabella 2, si consiglia di sostituire le viti di bloccaggio con viti nuove al momento della sostituzione degli inserti.

DIMENSIONI DI MONTAGGIO

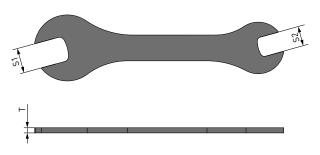
Codice ordinazione	CBDP	DAH	DCSFMS	KWW	L8	DCCB
TIPO A						
AXD4000-040A02RA	18	8.5	34	8.4	5.6	12
AXD4000-040A03RA	18	8.5	34	8.4	5.6	12
AXD4000-050A02RA	20	11	45	10.4	6.3	17
AXD4000-050A04RA	20	11	45	10.4	6.3	17
AXD4000A-050A04RD	20	11	45	10.4	6.6	17
AXD4000-063A05RA	20	11	50	10.4	6.3	17
AXD4000-080A05RA	23	13	60	12.4	7	20
AXD4000-100A06RA	26	17	78	14.4	8	26
AXD4000-125B07RA	40	56	90	16.4	9	_
TIPO B						
AXD4000-40A02RB	18	8.5	34	8.4	5.6	12
AXD4000-40A03RB	18	8.5	34	8.4	5.6	12
AXD4000-50A02RB	20	11	45	10.4	6.3	17
AXD4000-50A04RB	20	11	45	10.4	6.3	17
AXD4000A-050A04RE	20	11	45	10.4	6.3	17
AXD4000-63A05RB	20	11	50	10.4	6.3	17
AXD4000-80A05RB	23	13	60	12.4	7	20
AXD4000-100A06RB	26	17	78	14.4	8	26
AXD4000-125B07RB	40	56	90	16.4	9	_



TIPO CON ATTACCO A VITE

Solo frese destre.

Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	OAL	RPMX	WT	ZEFP	Tipo	RE
TIPO A											
AXD4000R252AM1228A	•	15.0	25	12.5	28	50	49000	0.06	2	1	
AXD4000R282AM1228A	•	15.0	28	12.5	28	50	48500	0.07	2	1	_
AXD4000R322AM1635A	•	15.0	32	17.0	35	58	48000	0.15	2	1	0.4-3.2
AXD4000R353AM1635A	•	15.0	35	17.0	35	58	41000	0.15	3	1	_
AXD4000R403AM1635A	•	15.0	40	17.0	35	58	38000	0.18	3	1	
TIPO B											
AXD4000R252AM1228B	•	14.8	25	12.5	28	50	49000	0.06	2	1	
AXD4000R282AM1228B	•	14.8	28	12.5	28	50	48500	0.07	2	1	_
AXD4000R322AM1635B	•	14.8	32	17.0	35	58	48000	0.15	2	1	4.0-5.0
AXD4000R353AM1635B	•	14.8	35	17.0	35	58	41000	0.15	3	1	_
AXD4000R403AM1635B	•	14.8	40	17.0	35	58	38000	0.18	3	1	


SPECIFICHE DIMENSIONALI

Codice ordinazione	CRKS	S10	DCON	DCSFMS
TIPO A				
AXD4000R252AM1228A	M12	19	12.5	23.5
AXD4000R282AM1228A	M12	19	12.5	23.5
AXD4000R322AM1635A	M16	24	17.0	28.5
AXD4000R353AM1635A	M16	24	17.0	28.5
AXD4000R403AM1635A	M16	24	17.0	28.5
TIPO B				
AXD4000R252AM1228B	M12	19	12.5	23.5
AXD4000R282AM1228B	M12	19	12.5	23.5
AXD4000R322AM1635B	M16	24	17.0	28.5
AXD4000R353AM1635B	M16	24	17.0	28.5
AXD4000R403AM1635B	M16	24	17.0	28.5

AXD4000

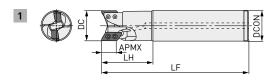
RICAMBIO VENDUTO SEPARATAMENTE

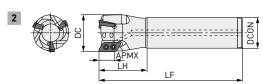
CHIAVE PER IL MONTAGGIO SUL MANDRINO

Codice ordinazione	S1*	S2*	Т
AKY1924050A	24	19	5

^{*} Coppia bloccaggio (N • m) : 19 = 80, 24 = 90

^{1.} Per la forma della testina filettata, non è possibile utilizzare le normali chiavi in commercio per l'installazione sul mandrino. È consigliato utilizzare l'apposita chiave.




TIPO A STELO CILINDRICO

Solo frese destre.

Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	LH	RPMX	ZEFP	Tipo	RE
TIPO A										
AXD4000R201SA20SA	•	15.5	20	20	110	35	15000	1	1	
AXD4000R252SA25SA	•	15.5	25	25	125	50	49000	2	1	
AXD4000R252SA25LA	•	15.5	25	25	170	80	49000	2	1	
AXD4000R282SA25SA	•	15.5	28	25	125	50	48500	2	2	
AXD4000R282SA25ELA	•	15.5	28	25	220	50	48500	2	2	
AXD4000R322SA32SA	•	15.5	32	32	150	50	48000	2	1	0.4
AXD4000R322SA32LA	•	15.5	32	32	200	80	48000	2	1	3.2
AXD4000R352SA32SA	•	15.5	35	32	150	50	45000	2	2	
AXD4000R352SA32ELA	•	15.5	35	32	250	50	45000	2	2	
AXD4000R403SA32SA	•	15.5	40	32	150	50	41000	3	2	
AXD4000R403SA42SA	•	15.5	40	42	170	80	41000	3	1	
AXD4000R403SA32ELA	•	15.5	40	32	250	50	41000	3	2	
TIPO B										
AXD4000R201SA20SB	•	14.8	20	20	110	35	15000	1	1	
AXD4000R252SA25SB	•	14.8	25	25	125	50	49000	2	1	
AXD4000R252SA25LB	•	14.8	25	25	170	80	49000	2	1	
AXD4000R282SA25SB	•	14.8	28	25	125	50	48500	2	2	
AXD4000R282SA25ELB	•	14.8	28	25	220	50	48500	2	2	
AXD4000R322SA32SB	•	14.8	32	32	150	50	48000	2	1	4.0
AXD4000R322SA32LB	•	14.8	32	32	200	80	48000	2	1	5.C
AXD4000R352SA32SB	•	14.8	35	32	150	50	45000	2	2	3.0
AXD4000R352SA32ELB	•	14.8	35	32	250	50	45000	2	2	
AXD4000R403SA32SB	•	14.8	40	32	150	50	41000	3	2	
AXD4000R403SA42SB	•	14.8	40	42	170	80	41000	3	1	
AXD4000R403SA32ELB	•	14.8	40	32	250	50	41000	3	2	

^{1.} Si indica il numero di giri max. consentito per garantire la stabilità dell'utensile e dell'inserto.

Quando si usa l'utensile ad alte velocità del mandrino, accertarsi che l'utensile e la prolunga siano correttamente bilanciati.
 Nota: per inserto con raggio torico pari o superiore a 1.6, all'aumentare del raggio aumentano le dimensioni LF e LH.

AXD4000

INSERTI

N	Lega di alluminio			*		C	¢		zioni di	•			4	
S	Lega di titanio				# •				lio stabi ıra: F:Af				o # :Taglio inst Raggio	abile
	<u> </u>			Rive	stito	Metal	lo duro	Onacc	ii u. i .Ai	intato	L.AITON	Jiluuto	rtaggio	
	Codice ordinazione	Classe	Tipo di onatura	LC15TF	MP9120	MT2010	TF15	L	INSL	S	BS	RE	Forma	Geometria
	XDGX175004PDFR-GL	G	F	*			•	23.0	17.5	5	1.7	0.4		
	XDGX175008PDFR-GL	G	F	*			•	23.0	17.5	5	1.3	0.8		
	XDGX175012PDFR-GL	G	F	*			*	23.0	17.5	5	0.9	1.2		
	XDGX175016PDFR-GL	G	F	*			•	22.0	17.5	5	1.4	1.6	•	
	XDGX175020PDFR-GL	G	F	*			•	22.0	17.5	5	1.0	2.0	100	
	XDGX175024PDFR-GL	G	F	*			*	22.0	17.5	5	0.6	2.4	12.3	
	XDGX175030PDFR-GL	G	F	*			•	21.1	17.5	5	0.8	3.0		
	XDGX175032PDFR-GL	G	F	*			*	21.1	17.5	5	0.6	3.2	=	
	XDGX175040PDFR-GL	G	F	*			•	20.0	17.5	5	0.8	4.0		
	XDGX175050PDFR-GL	G	F	*			•	19.4	17.5	5	0.4	5.0	-	
	XDGX175004PDER-GM	G	Е		•			23.0	17.5	5	1.7	0.4		L pr
	XDGX175008PDER-GM	G	Е		•			23.0	17.5	5	1.3	0.8	•	RE
	XDGX175012PDER-GM	G	E		•			23.0	17.5	5	0.9	1.2		SEL
	XDGX175016PDER-GM	G	Е		•			22.0	17.5	5	1.4	1.6	•	30°
	XDGX175020PDER-GM	G	Е		•			22.0	17.5	5	1.0	2.0	001	Ws.
	XDGX175024PDER-GM	G	Е		•			22.0	17.5	5	0.6	2.4		
	XDGX175030PDER-GM	G	Е		•			21.1	17.5	5	0.8	3.0		
	XDGX175032PDER-GM	G	Е		•			21.1	17.5	5	0.6	3.2		—
	XDGX175040PDER-GM	G	Е		•			20.0	17.5	5	0.5	4.0		20°
	XDGX175050PDER-GM	G	Е		•			19.4	17.5	5	0.4	5.0	•	<u>→ ~ ←</u>
	XDGX175004PDFR-GM	G	F			•	•	23.0	17.5	5	1.7	0.4		
	XDGX175008PDFR-GM	G	F			•	•	23.0	17.5	5	1.3	0.8	•	
	XDGX175012PDFR-GM	G	F			*	•	23.0	17.5	5	0.9	1.2		
	XDGX175016PDFR-GM	G	F			•	•	22.0	17.5	5	1.4	1.6		
	XDGX175020PDFR-GM	G	F			•	•	22.0	17.5	5	1.0	2.0	001	
	XDGX175024PDFR-GM	G	F			*	•	22.0	17.5	5	0.6	2.4		
	XDGX175030PDFR-GM	G	F			•	•	21.1	17.5	5	0.8	3.0		
	XDGX175032PDFR-GM	G	F			*	•	21.1	17.5	5	0.6	3.2	-	
	XDGX175040PDFR-GM	G	F			•	•	20.0	17.5	5	0.5	4.0		
	XDGX175050PDFR-GM	G	F			•	•	19.4	17.5	5	0.4	5.0	-	

RICAMBI

TIPO A MANICOTTO/T	TIPO A MANICOTTO/TIPO CON ATTACCO A VITE/TIPO A STELO CILINDRICO									
Codice corpi fresa	*	J. S.								
	Vite di bloccaggio	Chiave	Lubrificante anti-grippaggio	Inserto						
AXD4000R201SA20SA	- TS3SBS									
AXD4000R201SA20SB	- 150505			VD 0V4 FF0 000						
TIPO A	- TS3SB	TKY08D	MK1KS	XDGX1750 PDOR-OO						
TIPO B	13336									
AXD4000A	TPS3SB									

^{*} Coppia bloccaggio (N • m) : TS3SB(S) = 1.5, TPS3SB = 3.0

AXD4000

COMBINAZIONE FRESA E RAGGIO TORICO INSERTO

	Fresa tipo A										
					000000A				AXD4000- AXD4000R		
Raggio torico inserto	R0.4	R0.8	R1.2	R1.6	R2.0	R2.4	R3.0	R3.2	R4.0	R5.0	
applicabile (RE)	XDGX 1750 <u>04</u> PD\R-\\	XDGX 1750 <u>08</u> PD:R-::	XDGX 1750 <u>12</u> PD::R-::	XDGX 1750 <u>16</u> PD\R-\\	XDGX 1750 <u>20</u> PD\R-\\	XDGX 1750 <u>24</u> PD:R-::	XDGX 1750 <u>30P</u> DOR-	XDGX 17503 <u>2P</u> DOR-	XDGX 1750 <u>40</u> PD\R-\\\	XDGX 17505 <u>0P</u> DOR-00	

^{1.} Si noti che non esiste compatibilità tra un inserto per le frese di tipo A e quelle di tipo B.

CONDIZIONI DI TAGLIO RACCOMANDATE

										fz		
	Materiale da	Durezza	Grado		Vc	ae	ар			DC		
	lavorare							Ø20	Ø25-Ø28	Ø32-Ø35	Ø40	Ø50-Ø125
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						<0.25 DC	<10	<0.05	<0.2	<0.2	<0.2	<0.2
							<14.5	<0.05	<0.15	<0.15	<0.15	<0.15
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						<0.5 DC	<10	_	<0.2	<0.2	<0.2	<0.2
	Lega di alluminio	C: .E0/	TF15	CI	1000		<14.5	_	<0.15	<0.15	<0.15	<0.15
	(A6061, A7075)	Si<5%	LC15TF	GL	(200–3000)		<5	<0.05	<0.25	<0.25	<0.25	<0.25
						<0.75 DC	<10	_	<0.2	<0.2	<0.2	<0.2
							<14.5	_	<0.15	<0.15	<0.15	<0.15
							<5	<0.05	<0.25	<0.25	<0.25	<0.25
						DC	<10	_	_	_	_	_
							<14.5	_	_	_	_	_
					1000 (200–3000)		<5	<0.05	<0.35	<0.35	<0.4	<0.4
						<0.25 DC	<10	<0.05	<0.3	<0.3	<0.35	<0.35
							<14.5	<0.05	<0.25	<0.25	<0.3	<0.3
							<5	<0.05	<0.35	<0.35	<0.35	<0.4
						<0.5 DC	<10	_	<0.3	<0.3	<0.3	<0.35
	Lega di alluminio	C: F0/	TF15	014			<14.5	_	<0.2	<0.25	<0.25	<0.3
N	(A6061, A7075)	Si<5%	MP9120	GM			<5	<0.05	<0.3	<0.3	<0.3	<0.35
						<0.75 DC	<10	_	<0.25	<0.25	<0.25	<0.3
							<14.5	_	<0.2	<0.2	<0.2	<0.25
							<5	<0.05	<0.25	<0.25	<0.3	<0.35
						DC	<10	_	_	_	_	_
							<14.5	_	_	_	_	_
							<5	<0.05	<0.35	<0.35	<0.4	<0.4
						<0.25 DC	<10	<0.05	<0.3	<0.3	<0.35	<0.35
							<14.5	<0.05	<0.25	<0.25	<0.3	<0.3
							<5	<0.05	<0.35	<0.35	<0.35	<0.4
	Lega di alluminio					<0.5 DC	<10	_	<0.3	<0.3	<0.3	<0.35
	(AC4B)	5%≼Si≼10%	1450400	014	200		<14.5	_	<0.2	<0.25	<0.25	<0.3
	Lega di alluminio	Si>10%	MP9120	GM	(200-3000)		<5	<0.05	<0.3	<0.3	<0.3	<0.35
	(ADC12, A390)					<0.75 DC	<10	_	<0.25	<0.25	<0.25	<0.3
							<14.5	_	<0.2	<0.2	<0.2	<0.25
						DC	<5	<0.05	<0.25	<0.25	<0.3	<0.35
							<10	_	_	_	_	_
							<14.5	_	_	_	_	_

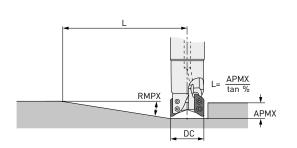
AXD4000

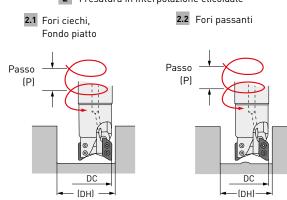
										fz		
Mater lavora	iale da are	Durezza	Grado		Vc	ae	ар			DC		
141011								Ø20	Ø25-Ø28	Ø32-Ø35	Ø40	Ø50-Ø125
							<5	<0.05	<0.1	<0.1	<0.1	<0.1
						<0.25 DC	<10	<0.05	<0.1	<0.1	<0.1	<0.1
							<14.5	<0.05	<0.1	<0.1	<0.1	<0.1
							<5	<0.05	<0.08	<0.1	<0.1	<0.1
						<0.5 DC	<10	_	<0.08	<0.1	<0.1	<0.1
Lega	di titanio		MP9120	CM	40		<14.5	_	<0.08	<0.1	<0.1	<0.1
(Ti6Al	4V)		MP9120	GM	(30-60)		<5	<0.05	<0.05	<0.08	<0.1	<0.1
						<0.75 DC	<10	_	<0.05	<0.08	<0.1	<0.1
							<14.5	_	<0.05	<0.08	<0.1	<0.1
							<5	<0.05	<0.05	<0.05	<0.05	<0.05
						DC	<10	_	_	_	_	_
						•	<14.5	_	_	_	_	_

- 1. Le condizioni di taglio sopra riportate sono determinate su valori generici per macchine e pezzi con elevata rigidità, in assenza di vibrazioni. In caso di vibrazioni modificare a seconda delle condizioni della lavorazione.
- 2. Vibrazioni possono verificarsi nelle seguenti condizioni:
 - Quando si lavora in condizioni di sbalzo elevato.
 - Quando si eseguono raggi negli angoli nella svuotatura di tasche.
 - Quando il pezzo da lavorare ha una scarsa rigidità di bloccaggio o quando la rigidità della macchina o del pezzo è bassa possono facilmente verificarsi delle vibrazioni. In tale caso, ridurre le condizioni di taglio come larghezza e profondità di taglio e avanzamento per dente.

AXD4000A

							fz
Materiale da lavorare	Durezza	Grado		Vc	ae	ар	DC
							Ø50
						≤ 5	≤ 0.35
					<0.5 D1	≤10	≤ 0.30
		MT2010				≤14.5	≤ 0.25
		TF15	GM	4000 (200–5000)		≤ 5	≤ 0.30
Lega di alluminio		MP9120		(200-3000)	≤0.75 D1	≤10	≤ 0.25
(A7050, A7075,	Si<5%				-	≤14.5	≤ 0.20
A2024, A6061)				-	D1	≤ 5	≤ 0.30
		-				≤ 5	≤ 0.20
		TF15	01	4000	≤0.75 D1	≤10	≤ 0.15
		LC15TF	GL	(200-5000)	-	≤14.5	≤ 0.10
				-	D1	≤ 5	≤ 0.20


- 1. Le condizioni di taglio di cui sopra sono determinate in base al materiale del pezzo lavorato e alla rigidità della macchina, in cui non si verificano vibrazioni. Se si verificano vibrazioni, effettuare le regolazioni in base alle condizioni di lavorazione.
- 2. Si noti che le vibrazioni possono verificarsi nelle seguenti condizioni.
 - Quando si utilizza una sporgenza utensile troppo elevata.
 - Quando si lavorano tasche con raggi negli angoli.


Quando il materiale del pezzo lavorato ha una scarsa rigidità di serraggio o quando la rigidità della macchina o del materiale del pezzo è bassa; in questo caso è facile che si verifichino vibrazioni; in tal caso, ridurre le condizioni di taglio, così come la larghezza e la profondità di asportazione e l'avanzamento per dente.

AXD4000

FRESATURA IN RAMPA/INTERPOLAZIONE ELICOIDALE

1 Lavorazione in rampa 2 Fresatura in interpolazione elicoidale

	DE.	1			2.	.1		2	.2
DC	RE —	RMPX	L*1	DH max.	P max.	DH min.	P max.	DH min.	P max.
TIPO A									
	0.4-1.2	20.7	42	37.1 *2	14	36.1	14	22	2
20	1.6-2.4	19.9	43	34.7 *3	13	34.6	13	22	2
	3.0-3.2	18.9	46	33.1 *4	12	33.3	12	22	1
	0.4-1.2	23.1	37	47.1 *2	14	46	14	32	8
25	1.6-2.4	22.0	39	44.7 *3	13	44.4	13	32	8
	3.0-3.2	18.7	46	43.1 *4	12	43	12	32	7
	0.4-1.2	19.2	45	53.1 *2	14	52	14	36	8
28	1.6-2.4	18.5	47	50.7 * ³	13	50.4	13	36	8
	3.0-3.2	16.7	52	49.1 *4	12	48.9	12	36	7
	0.4-1.2	15.4	57	61.1 *2	14	59.9	14	46	11
32	1.6-2.4	14.7	60	58.7 * ³	13	58.3	13	46	11
	3.0-3.2	13.8	64	57.1 * ⁴	12	56.8	12	46	10
	0.4-1.2	13.4	66	67.1 *²	14	65.8	14	50	11
35	1.6-2.4	12.7	69	64.7 *3	13	64.3	13	50	10
	3.0-3.2	11.8	75	63.1 *4	12	62.8	12	50	9
	0.4-1.2	11.1	80	76.7 *2	14	75.9	14	62	13
40	1.6-2.4	10.4	85	74.3 * ³	13	74.2	13	62	12
	3.0-3.2	9.7	91	72.7 *4	12	72.7	12	62	11
	0.4-1.2	8.2	108	96.7 *2	14	95.6	14	81	14
50	1.6-2.4	7.6	117	94.3 *3	13	94	13	81	13
	3.0-3.2	6.9	129	92.7 *4	12	92.4	12	81	11
	0.4-1.2	6.1	146	122.7 *2	14	121.6	14	107	14
63	1.6-2.4	5.6	159	120.3 *3	13	119.9	13	107	13
	3.0-3.2	5.2	171	118.7 *4	12	118.4	12	107	12
	0.4-1.2	4.6	193	156.7 *2	14	155.6	14	141	14
80	1.6-2.4	4.2	212	154.3 *3	13	153.9	13	141	13
	3.0-3.2	3.8	234	152.7 *4	12	152.4	12	141	12
	0.4-1.2	3.5	254	196.7 *2	14	195.5	14	181	14
100	1.6-2.4	3.2	278	194.3 *3	13	193.9	13	181	13
	3.0-3.2	2.9	306	192.7 *4	12	192.3	12	181	12
	0.4-1.2	2.7	329	246.7 *2	14	245.5	14	231	14
125	1.6-2.4	2.5	356	244.3 *3	13	243.8	13	231	13
	3.0-3.2	2.3	386	242.7 *4	12	242.3	12	231	12

AXD4000

DC.	D.F.	1			2.	.1		2	.2
DC	RE -	RMPX	L*1	DH max.	P max.	DH min.	P max.	DH min.	P max.
IPO B									
20 -	4	17.5	47	31.5	10	31.8	10	22	1
20 -	5	16.6	71	29.5	6	31.1	7	22	1
25 -	4	15.1	55	41.5	10	41.4	10	32	5
25 -	5	13.7	61	39.5	9	40.6	9	32	5
20	4	14.1	59	47.5	10	47.2	10	36	6
28 -	5	13	65	45.5	9	46.4	9	36	5
22	4	12.7	66	55.5	10	55.1	10	46	9
32 -	5	12	70	53.5	9	54.3	9	46	8
0.F	4	10.8	78	61.5	10	61	10	50	8
35 -	5	10.2	83	59.5	9	60.2	9	50	8
/0	4	8.8	96	71.1	10	70.9	10	62	10
40 -	5	8.2	103	69.1	9	70.1	9	62	9
FO	4	6.3	135	91.1	10	90.6	10	81	10
50 -	5	5.8	146	89.1	9	89.8	9	81	9
/0	4	4.6	184	117.1	10	116.6	10	107	10
63 -	5	4.2	202	115.1	9	115.7	9	107	9
00	4	3.4	250	151.1	10	150.5	10	141	10
80 -	5	3.1	274	149.1	9	149.6	9	141	9
100	4	2.6	326	191.1	10	190.5	10	181	10
100 -	5	2.4	354	189.1	9	189.6	9	181	9
405	4	2	424	241.1	10	240.5	10	231	10
125 -	5	1.8	471	239.1	9	239.6	9	231	9

^{1.} L'avanzamento in rampa consigliato è pari o inferiore a 0.05 mm/dente.

PROFONDITÀ DI PENETRAZIONE ASSIALE MASSIMA

				0	С		
	RE	Ø20	Ø25	Ø28	Ø32	Ø35	Ø40-Ø125
	0.4	5.3	5.2	5.2	5.2	5.3	5.3
	0.8	5.3	5.2	5.2	5.2	5.3	5.3
	1.2	5.3	5.2	5.2	5.2	5.3	5.3
T: A	1.6	4.8	4.6	4.7	4.7	4.9	4.8
Tipo A	2.0	4.8	4.6	4.7	4.7	4.9	4.8
•	2.4	4.8	4.6	4.7	4.7	4.9	4.8
	3.0	4.3	3.7	4.2	4.2	4.4	4.4
•	3.2	4.3	3.7	4.2	4.2	4.4	4.4
Tine D	4.0	3.7	2.7	3.7	3.6	3.8	3.8
Tipo B	5.0	3.4	2.3	3.3	3.3	3.5	3.5

^{*1} Usando l'angolo di rampa massimo, la distanza per raggiungere la profondità massima di taglio è la seguente:

L= (profondità di taglio massima APMX/tan %). La profondità di taglio massima del tipo A è 15.5 mm, del tipo B è 14.8 mm.

*2 Raggio torico 1.2 mm. Per altri raggi torici, usare la seguente formula: {(DC)-{RE}-0.25}×2

*3 Raggio torico 2.4 mm. Per altri raggi torici, usare la seguente formula: {(DC)-{RE}-0.25}×2

^{*4} Raggio torico 3.2 mm. Per altri raggi torici, usare la seguente formula: $\{(DC)-(RE)-0.25\}\times 2$

UN NUOVO LIVELLO DI VERSATILITÀ

Per saperne di più...

B260

www.mhg-mediastore.net

STABILE E AFFIDABILE

Fresa a 90° ad alte prestazioni con inserti trigonali bilaterali per fresatura in spallamento, frontale e in copiatura.

Gli inserti con 6 taglienti offrono un costo tagliente competitivo ed un'eccellente affidabilità di processo, grazie ad una specifica geometria a curvatura negativa, ma con tagliente affilato a curvatura positiva.

Il posizionamento preciso degli inserti garantisce un reale spallamento a 90°, eliminando la necessità di operazioni secondarie con un notevole risparmio di tempo di produzione e costi.

GAMMA WWX200

Tipo a manicotto: DC Ø 40 – 160 mm
 Tipo a stelo cilindrico: DC Ø 25 – 50 mm
 Inserti con raggi: 0.4 – 0.8
 Profondità di taglio: APMX 5 mm

GAMMA WWX400

Tipo a manicotto: DC Ø 50 – 250 mm
 Tipo a stelo cilindrico: DC Ø 50 – 80 mm
 Inserti con raggi: 0.4/0.8/1.6/2.0
 Profondità di taglio: APMX 8 mm

APPLICAZIONE

- Lavorazione generica
- Fresatura di spianatura
- Fresatura in spallamento

CARATTERISTICHE UNICHE

SCELTA E DISPONIBILITÀ

I diametri da 25 a 160 mm (WWX200)/50 a 250 mm (WWX400) sono disponibili nelle geometrie con passo largo, fitto ed extra-fitto. L'ampia selezione di misure consente di trovare il corpo fresa ideale per le più svariate applicazioni.

Inoltre, ogni corpo fresa dispone di fori passanti per l'adduzione del lubro-refrigerante su ogni dente.

SPALLAMENTO A 90° DI ELEVATA QUALITÀ E INSERTO CON ASPORTAZIONE MASSIMA DI 5 MM (WWX200)/8 MM (WWX400)

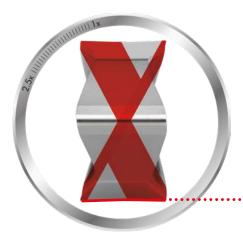
L'ottima disposizione dell'inserto crea una resistenza al taglio estremamente ridotta e contribuisce a produrre pareti precise a 90° in tutte le condizioni di lavorazione.

FORZA DI TAGLIO RIDOTTA

L'innovativa geometria produce sforzi di taglio ridotti, mentre il maggiore spessore dell'inserto offre un'ottima resistenza alla rottura.

AMPIO RAGGIO DEL TRATTO RASCHIANTE

Per soddisfare le moderne aspettative circa la qualità della finitura superficiale, viene utilizzato un raggio appositamente definito (R = 100 mm) come geometria raschiante per tutti i rompitrucioli a L, M e R.



INSERTI

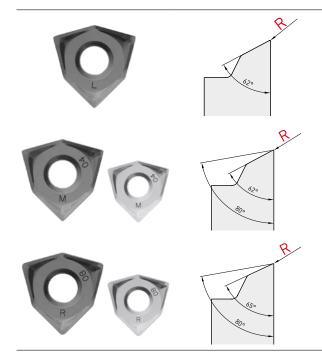
PRECISO POSIZIONAMENTO DELL'INSERTO ASSOCIATO AD UN SOLIDO BLOCCAGGIO

Bloccaggio preciso, stabile e sicuro degli inserti grazie a quattro superfici di contatto all'interno della sede ed all'uso di una vite di serraggio di grandi dimensioni. La fresa WWX200/WWX400 può essere quindi consigliata sia per la semi-sgrossatura che per le lavorazioni di finitura.

Geometria a X rafforzata

LAVORAZIONE IN SPALLAMENTO E IN PARETE SENZA ALCUN SCHIACCIAMENTO DEI TRUCIOLI

Il tagliente principale convesso consente una precisa lavorazione in spallamento a 90° e riduce il contatto tra trucioli espulsi e pezzo da lavorare.

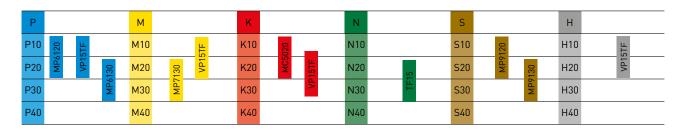

Convenzionale

GRADI E ROMPITRUCIOLI

L'ampia selezione di gradi e rompitrucioli consente di trovare la soluzione ottimale per una lavorazione stabile ed efficace nelle più diverse applicazioni.

ROMPITRUCIOLO L

Consigliato per lavorazioni che richiedono bassi sforzi di taglio o per lavorazioni di materiali HRSA.


ROMPITRUCIOLO M

Il giusto equilibrio tra affilatura del tagliente e stabilità. Prima scelta, idoneo per varie tipologie di materiali e applicazioni.

ROMPITRUCIOLO R

Prima scelta per condizioni di taglio interrotto.

GRADI PER LA LAVORAZIONE DI UN'AMPIA GAMMA DI MATERIALI

MP6120

Per fresatura generica di acciai.

MP6130

Per fresatura interrotta di acciai.

MP7130

Per fresatura generica di acciai inossidabili.

MC5020

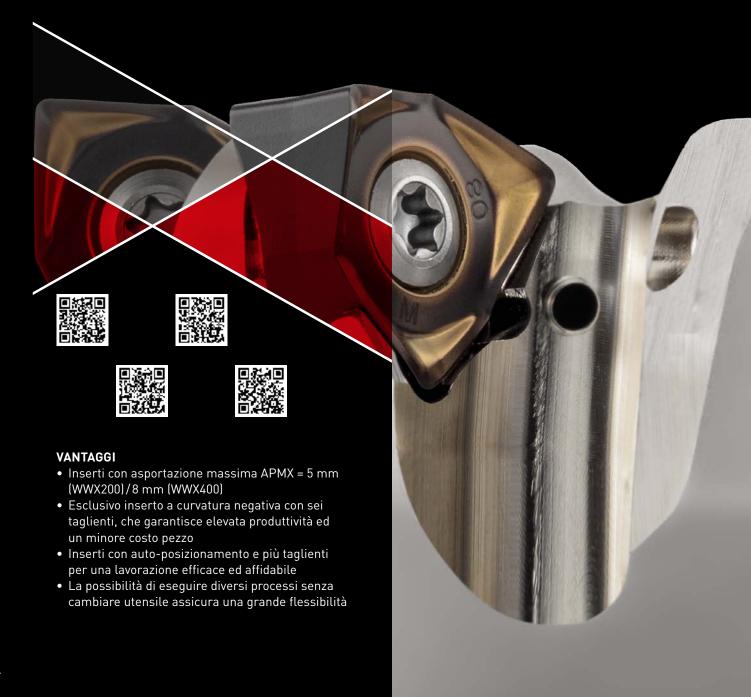
Per fresatura generica di ghise.

MP9120

Per fresatura generica di HRSA e leghe di titanio.

MP9130

Per fresatura interrotta e generica di HRSA e leghe di titanio.


ΓF15

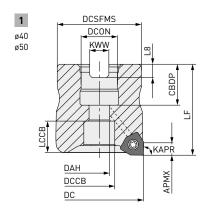
Per fresatura generica di alluminio.

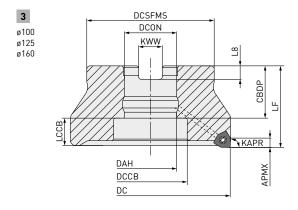
VP15TF

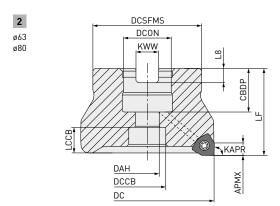
Per fresatura stabile di acciai temprati.

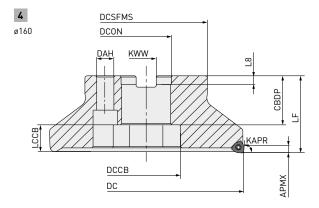
UN NUOVO LIVELLO DI VERSATILITÀ

FRESA AD INSERTI A 90°









Solo corpi fresa destri.

TIPO A MANICOTTO

Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	RPMX	WT	ZEFP	•	Tipo
WWX200-040A03AR	•	5	40	16	40	21600	0.2	3	0	1
WWX200-040A04AR	•	5	40	16	40	21600	0.2	4	0	1
WWX200-050A04AR	•	5	50	22	40	18600	0.4	4	0	1
WWX200-050A05AR	•	5	50	22	40	18600	0.4	5	0	1
WWX200-050A06AR	•	5	50	22	40	18600	0.3	6	0	1
WWX200-063A05AR	•	5	63	22	40	16000	0.5	5	0	2
WWX200-063A06AR	•	5	63	22	40	16000	0.5	6	0	2
WWX200-063A07AR	•	5	63	22	40	16000	0.5	7	0	2
WWX200-080A05AR	•	5	80	27	50	13600	1.1	5	0	2
WWX200-080A07AR	•	5	80	27	50	13600	1.0	7	0	2

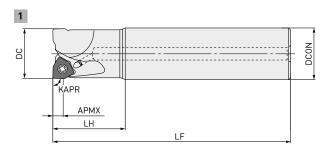
Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	RPMX	WT	ZEFP		Tipo
WWX200-080A09AR	•	5	80	27	50	13600	1.0	9	0	2
WWX200-100B06AR	•	5	100	32	50	11700	1.7	6	0	3
WWX200-100B08AR	•	5	100	32	50	11700	1.7	8	0	3
WWX200-100B11AR	•	5	100	32	50	11700	1.7	11	0	3
WWX200-125B07AR	•	5	125	40	63	10100	3.1	7	0	3
WWX200-125B11AR	•	5	125	40	63	10100	3.0	11	0	3
WWX200-125B14AR	•	5	125	40	63	10100	3.0	14	0	3
WWX200-160C09NR	•	5	160	40	63	8600	4.6	9	_	4
WWX200-160C12NR	•	5	160	40	63	8600	4.6	12	_	4
WWX200-160C16NR	•	5	160	40	63	8600	4.6	16	_	4

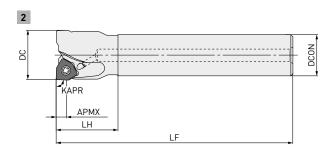
50 (Vc)

- 1. Le velocità massime del mandrino (RPMX) sono predefinite per garantire la stabilità dell'utensile e il bloccaggio dell'inserto.
- 2. Quando si usa l'utensile con alte velocità del mandrino, accertarsi che l'utensile e la prolunga siano correttamente bilanciati.
- 3. \bigcirc = Con fori passanti per refrigerante
- 4. Il bullone di fissaggio al mandrino non è fornito con il corpo fresa. Fare riferimento a pagina 48 per ordinarlo.
 5. Utilizzare un bullone tipo FMC per i diametri fresa da 40 a 100 mm (DC).
- 6. Utilizzare un bullone tipo FMA per diametri fresa da 125 a 160 mm (DC).

Codice ordinazione	CBDP	DAH	DCCB	DCON	DCSFMS	KWW	LCCB	L8	Tipo
MANANYOOO OYOAOOAD	10		10.7	1/	0.17	0.7	10.0	F /	
WWX200-040A03AR	18	9	13.6	16	37	8.4	13.8	5.6	1
WWX200-040A04AR	18	9	13.6	16	37	8.4	13.8	5.6	1
WWX200-050A04AR	20	11	17	22	47	10.4	11.8	6.3	1
WWX200-050A05AR	20	11	17	22	47	10.4	11.8	6.3	1
WWX200-050A06AR	20	11	17	22	47	10.4	11.8	6.3	1
WWX200-063A05AR	20	11	17	22	50	10.4	11.8	6.3	2
WWX200-063A06AR	20	11	17	22	50	10.4	11.8	6.3	2
WWX200-063A07AR	20	11	17	22	50	10.4	11.8	6.3	2
WWX200-080A05AR	23	13	20	27	56	12.4	11.8	7	2
WWX200-080A07AR	23	13	20	27	56	12.4	11.8	7	2
WWX200-080A09AR	23	13	20	27	56	12.4	11.8	7	2
WWX200-100B06AR	26	32	45	32	78	14.4	16.8	8	3
WWX200-100B08AR	26	32	45	32	78	14.4	16.8	8	3
WWX200-100B11AR	26	32	45	32	78	14.4	16.8	8	3
WWX200-125B07AR	35	42	56	40	89	16.4	21.8	9	3
WWX200-125B11AR	35	42	56	40	89	16.4	21.8	9	3
WWX200-125B14AR	35	42	56	40	89	16.4	21.8	9	3
WWX200-160C09NR	40	_	56	40	100	16.4	21.8	9	4
WWX200-160C12NR	40	_	56	40	100	16.4	21.8	9	4
WWX200-160C16NR	40	_	56	40	100	16.4	21.8	9	4

FRESA AD INSERTI A 90°





Solo corpi fresa destri.

TIPO A STELO CILINDRICO

Codice ordinazione	Disponibilità	АРМХ	DC	DCON	LF	RPMX	WT	LH	ZEFP		Tipo
WWX200R2502SA20S	•	5	25	20	115	29600	0.3	30	2	0	2
WWX200R2502SA25S	•	5	25	25	115	29600	0.4	35	2	0	1
WWX200R2502SA25L	•	5	25	25	170	29600	0.6	70	2	0	1
WWX200R2802SA25S	•	5	28	25	115	27400	0.4	35	2	0	2
WWX200R2802SA25L	•	5	28	25	170	27400	0.6	35	2	0	2
WWX200R3002SA25S	•	5	30	25	125	26200	0.5	35	2	0	2
WWX200R3202SA32S	•	5	32	32	125	26200	0.7	45	2	0	1
WWX200R3203SA32S	•	5	32	32	125	26200	0.7	45	3	0	1
WWX200R3203SA32L	•	5	32	32	190	26200	1.0	90	3	0	1
WWX200R3503SA32L	•	5	35	32	190	25100	1.1	45	3	0	2
WWX200R4003SA32S	*	5	40	32	125	21600	0.8	45	3	0	2
WWX200R4004SA32S	*	5	40	32	125	21600	0.8	45	4	0	2
WWX200R5004SA32S	*	5	50	32	125	18600	0.9	45	4	0	2
WWX200R5005SA32S	*	5	50	32	125	18600	0.9	45	5	0	2
WWX200R5006SA32S	*	5	50	32	125	18600	0.9	45	6	0	2
WWXZ00N30003A3Z3			30	52	123	10000	0.7	40			

^{1.} Le velocità massime del mandrino (RPMX) sono predefinite per garantire la stabilità dell'utensile e il bloccaggio dell'inserto. 2. Quando si usa l'utensile con alte velocità del mandrino, accertarsi che l'utensile e la prolunga siano correttamente bilanciati.

RICAMBI VENDUTI SEPARATAMENTE - BULLONI DI FISSAGGIO

	Kit	viti						_			
Codice fresa	Con foro per refrigerante	Senza foro per refrigerante			Dimei	nsioni di 1	riteri	ment	0		Geometria
	Codice ordinazione	Codice ordinazione	Tipo	а	b	С	d	е	f	g	_
WWX200R080CCA	HSC12035H	HSC12035	1	15	M12x1.75	47	12	10	_	_	1
WWX200R100CDA	MBA16033H	_	2	40	M16x2	43	10	14	6	23	
WWX200R12500EA	MBA20040H	_	2	50	M20x2.5	54	14	17	6	27	(()
WWX200R160OFA	MBA24045H	_	2	65	M24x3	59	14	17	10	37	· ·
											d c
WWX200-040AOOAR	HSC08025H	_	1	13	M8x1.25	33	8	5	_	_	2f
WWX200-050AOOAR	HSC10030H	HSC10035	1	16	M10x1.5	40 (45)	10	6	_	_	
WWX200-063AOOAR	HSC10030H	HSC10035	1	16	M10x1.5	40 (45)	10	6	_	_	
WWX200-080A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HSC12035H	HSC12035	1	18	M12x1.75	47	12	10	_	_	
WWX200-100BOOAR	MBA16033H	_	2	40	M16x2	43	10	14	6	23	•
WWX200-125BOOAR	MBA20040H	_	2	50	M20x2.5	54	14	17	6	27	
WWX200-160COONR	_	_	2	50	M20x2.5	54	14	17	6	27	- e - '- '- '- '- '- '- '- '- '- '- '- '- '

^{1.} Con questi bulloni di fissaggio è necessario il passaggio refrigerante dall'interno.

RICAMBI

Corpo fresa	*	P	
	Vite di serraggio	Chiave (inserto)	Lubrificante anti-grippaggio
Tipo a manicotto WWX400	TPS3R	TIP10D	MK1KS
Tipo con stelo cilindrico WWX400	IF35K	TIPTOD	IVININS

^{*} Coppia bloccaggio (N • m): TPS3R = 2.0

INSERTI

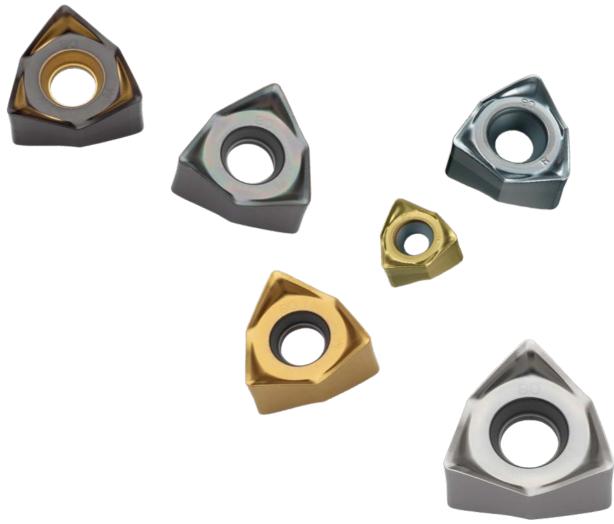
Р	Acciaio			•	C				*								
М	Acciaio inossidabile								C				di taglio ahile (io gener	rico \$: Taglio instabile	
Κ	Ghisa								*	C	O . 10	igilo si	ubite .	•. rage	io gener	100 W. Taglio instabile	
Ν	Metallo non ferroso										Onat						
S	Leghe resistenti al calore, titanio						•	C				55	F: Affila Z: Stal		Smusso	o + raggio	
Н	Acciai temprati			•							1.01	114330	2. 5(0)	bite			
	Codice ordinazione	Classe	Onatura	MP6120	MP6130	MP7130	MP9120	MP9130	VP15TF	MC5020	IC	S	S1	BS	RE	Geometria Soltanto inserti desi	tri.
EW	6NMU0906040PNER-M	М	Ε	•	•	•	•	•	•	•	9.0	5.3	6.1	1.6	0.4		
EW	6NMU0906080PNER-M	М	F	•	•	•	•	•	•	•	9.0	5.3	6.1	1.2	0.8	EPSR	
ΕW	6NMU0906080PNER-R	М	E	•	•		•	•	•	•	9.0	5.3	6.1	1.2	0.8		

(10 inserti per confezione)

WWX400

INSERTI

Р	Acciaio			•	C				*						,					
М	Acciaio inossidabile	Acciaio inossidabile							C			Condizioni di taglio : ●: Taglio stabile ●: Taglio generico ♦: Taglio instabile								
Κ	Ghisa								*		•	● : Ia	guo st	abile	▼ : Tagt	io gene	rico 🖚: laglio instabile			
N	Metallo non ferroso							c		Onatura:										
S	Leghe resistenti al calore, titanio	<u>, </u>					•	C	П			E: Ra T: Sm	so + raggio							
Н	Acciai temprati								•			1. 511	10550	Z. Jia	bite					
	Codice ordinazione	Classe	Onatura	MP6120	MP6130	MP7130	MP9120	MP9130	VP15TF	TF15	MC5020	IC	s	S 1	BS	RE	Geometria Soltanto inserti destri.			
	6NGU1409040PNER-L	G	Е	•	•	•	•	•	•		•	14	7	9	1.7	0.4				
	6NGU1409080PNER-L	G	Ε	•	•	•	•	•	•		•	14	7	9	1.3	0.8				
	6NGU1409040PNFR-L	G	F							•		14	7	9	1.7	0.4				
	6NGU1409080PNFR-L	G	F							•		14	7	9	1.3	0.8				
NEW	6NGU1409040PNER-M	G	Ε	•	•	•	•	•	•		•	14	7	9	1.7	0.4	EPSR			
NEW	6NGU1409080PNER-M	G	Ε	•	•	•	•	•	•		•	14	7	9	1.3	8.0				
	6NMU1409040PNER-M	М	Ε	•	•	•	•	•	•		•	14	7	9	1.7	0.4				
	6NMU1409080PNER-M	М	Ε	•	•	•	•	•	•		•	14	7	9	1.3	8.0	RE			
NEW	6NMU1409160PNER-M	М	Ε	•	•	•	•	•	•		•	14	7	9	0.5	1.6	IC S S1			
NEW	6NMU1409200PNER-M	М	Е	•	•	•	•	•	•		•	14	7	9	0.5	2.0	 			
	6NMU1409080PNER-R	М	Е	•	•	•	•	•	•		•	14	7	9	1.3	8.0				
NEW	6NMU1409160PNER-R	М	Е	•	•	•	•	•	•		•	14	7	9	0.5	1.6				
NEW	6NMU1409200PNER-R	М	Е	•	•	•	•	•	•		•	14	7	9	0.5	2.0				
NEW	2NGU1406ZNER6C-M	G	Ε	•						•	•	14	6.3	_	6.5					


CONDIZIONI DI TAGLIO RACCOMANDATE

VELOCITÀ DI TAGLIO/TAGLIO A SECCO

Materiale	Durezza	Condizioni	Grado -	Vc						
Materiale	Durezza	di taglio	Grado -	ae ≥ 0.5 DC	ae ≥ 0.8 DC	ae = DC				
		•	MP6120	240 (200–280)	220 (180–260)	200 (160–240)				
		•	MP6130	230 (190–270)	210 (170–250)	190 (150–230)				
Acciaio dolce	≤180HB	*	MP6130	210 (170–250)	190 (150–230)	170 (130–210)				
		*	VP15TF	210 (170–250)	190 (150–230)	170 (130–210)				
		•	MP6120	210 (170–250)	190 (150–230)	170 (130–210)				
Acciaio al carbonio	180 –	•	MP6130	200 (160–240)	180 (140–220)	160 (120–200)				
Acciaio legato Acciaio legato per utensili	280HB	*	MP6130	180 (140–220)	160 (120–200)	140 (100–180)				
rectato tegato per atensiti		*	VP15TF	180 (140–220)	160 (120–200)	140 (100–180)				
		•	MP6120	200 (160–240)	180 (140–220)	160 (120–200)				
Acciaio al carbonio	280 -	•	MP6130	190 (150–230)	170 (130–210)	150 (110–190)				
Acciaio legato Acciaio legato per utensili	350HB ≼350HB	*	MP6130	170 (130–210)	150 (110–190)	130 (90–170)				
recialo legato per uterisiti		*	VP15TF	170 (130–210)	150 (110–190)	130 (90–170)				
		•	MP6120	140 (120–160)	_	_				
Acciaio pretemprato	35 –	•	MP6130	120 (100–140)	_	_				
	45HRC	*	MP6130	110 (90–130)	_	_				
		*	VP15TF	110 (90–130)	_	_				
Acciaio inossidabile austenitico			MP7130	180 (160–200)	160 (140–180)	_				
		e.	MP7130	170 (150–190)	150 (130–170)	_				
	≤200HB	<u>e</u>	VP15TF	170 (150–190)	150 (130–170)	_				
	>200HB	*	MP7130	150 (130–170)	130 (110–150)	_				
		#	VP15TF	150 (130–170)	130 (110–150)	_				
		•	MP7130	170 (150–190)	150 (130–170)	_				
		C	MP7130	160 (140–180)	140 (120–160)	_				
		C	VP15TF	160 (140–180)	140 (120–160)	_				
		*	MP7130	140 (120–160)	120 (100–140)	_				
		*	VP15TF	140 (120–160)	120 (100–140)	_				
		•	MP7130	180 (160–200)	160 (140–180)	_				
		e	MP7130	170 (150–190)	150 (130–170)	_				
Ferritico e martensitico Acciaio inossidabile	≤200HB	<u></u>	VP15TF	170 (150–190)	150 (130–170)	_				
Accidio illossidabile		*	MP7130	150 (130–170)	130 (110–150)					
		*	VP15TF	150 (130–170)	130 (110–150)					
		•	MP7130	160 (140–180)	140 (120–160)					
		C	MP7130	150 (130–170)	130 (110–150)					
Acciaio inossidabile duplex	≤280HB	c	VP15TF	150 (130–170)	130 (110–150)					
		*	MP7130	130 (110–150)	110 (90–130)					
		*	VP15TF	130 (110–150)	110 (90–130)					
		•	MP7130	140 (120–160)	_	_				
		C	MP7130	130 (110–150)	_	_				
Acciaio inossidabile temprato per precipitazione	<450HB	c	VP15TF	130 (110–150)	_	_				
temprato per precipitazione		*	MP7130	110 (90–130)	_	_				
		*	VP15TF	110 (90–130)	_	_				

VELOCITÀ DI TAGLIO/TAGLIO A SECCO

	_	Condizioni		Vc								
Materiale	Durezza	di taglio	Grado -	ae ≥ 0.5 DC	ae ≥ 0.8 DC	ae = DC						
		•	MC5020	250 (210–290)	230 (190–270)	210 (170–250)						
		¢	MC5020	240 (200–280)	220 (180–260)	200 (160–240)						
Ghisa grigia	≤350MPa	C	VP15TF	240 (200–280)	220 (180–260)	_						
		*	MC5020	220 (180–260)	200 (160–240)	180 (140-220)						
		*	VP15TF	220 (180–260)	200 (160–240)	180 (140–220)						
		•	MC5020	220 (180–260)	200 (160–240)	180 (140-220)						
		•	MC5020	210 (170–250)	190 (150–230)	170 (130–210)						
Ghisa sferoidale	≤450MPa	•	VP15TF	210 (170–250)	190 (150–230)	_						
		*	MC5020	190 (150–230)	170 (130–210)	150 (110–190)						
		*	VP15TF	190 (150–230)	170 (130–210)	150 (110–190)						
		•	MC5020	180 (140–220)	160 (120–200)	140 (100–180)						
		•	MC5020	170 (130–210)	150 (110–190)	130 (90–170)						
Ghisa sferoidale	≤800MPa	C	VP15TF	170 (130–210)	150 (110–190)	-						
		*	MC5020	150 (110–190)	130 (90–170)	110 (70–150)						
		*	VP15TF	150 (110–190)	130 (90–170)	110 (70–150)						
Acciaio temprato	/O FELIDO	• €	VP15TF	50 (30- 70)	_	_						
	40 – 55HRC	C	MP6120	40 (30- 70)	_	_						

CONDIZIONI DI TAGLIO RACCOMANDATE

VELOCITÀ DI TAGLIO/TTAGLIO A UMIDO

Materiale	Durezza	Condizioni	Crada		Vc	
Materiale	Durezza	di taglio	Grado -	ae ≥ 0.5 DC	ae ≥ 0.8 DC	ae = DC
		•	MP6120	150 (140–160)	130 (120–140)	120 (110–130)
		c	MP6130	140 (130–150)	120 (110–130)	110 (100–120)
Acciaio dolce	≤180HB	*	MP6130	120 (110–130)	100 (90–110)	90 (80–100)
		*	VP15TF	120 (110–130)	100 (90–110)	90 (80–100)
		•	MP6120	150 (140–160)	130 (120–140)	120 (110–130)
Acciaio al carbonio	180 –	C	MP6130	140 (130–150)	120 (110–130)	110 (100–120)
Acciaio legato Acciaio legato per utensili	280HB	*	MP6130	120 (110–130)	100 (90–110)	90 (80–100)
, toolale tegate per atellett		*	VP15TF	120 (110–130)	100 (90–110)	90 (80–100)
		•	MP6120	140 (130–150)	120 (110–130)	110 (100–120)
Acciaio al carbonio	280 -	C	MP6130	130 (120–140)	110 (100–120)	100 (90–110)
Acciaio legato Acciaio legato per utensili	350HB ≼350HB	*	MP6130	110 (100–120)	90 (80–100)	80 (70- 90)
		*	VP15TF	110 (100–120)	90 (80–100)	80 (70- 90)
		•	MP6120	110 (100–120)	_	_
Accidio protomorato	35 -	C	MP6130	100 (90–110)	_	_
Acciaio pretemprato Acciaio inossidabile austenitico	45HRC	*	MP6130	80 (70- 90)	_	_
		*	VP15TF	80 (70- 90)	_	_
		•	MP7130	130 (120–140)	110 (100–120)	_
		<u></u>	MP7130	120 (110–130)	100 (90–110)	_
	≤200HB	<u>C</u>	VP15TF	120 (110–130)	100 (90–110)	_
		*	MP7130	100 (90–110)	80 (70- 90)	_
		*	VP15TF	100 (90–110)	80 (70- 90)	_
	>200HB	•	MP7130	130 (120–140)	110 (100–120)	_
		C	MP7130	120 (110–130)	100 (90–110)	_
		C	VP15TF	120 (110–130)	100 (90–110)	_
		*	MP7130	100 (90–110)	80 (70- 90)	_
		*	VP15TF	100 (90-110)	80 (70- 90)	_
		•	MP7130	130 (120–140)	110 (100–120)	_
e		C	MP7130	120 (110-130)	100 (90–110)	_
Ferritico e martensitico Acciaio inossidabile	≤200HB	C	VP15TF	120 (110–130)	100 (90–110)	_
Accidio mossidabile		*	MP7130	100 (90–110)	80 (70- 90)	_
		*	VP15TF	100 (90–110)	80 (70- 90)	_
		•	MP7130	120 (110–130)	100 (90–110)	_
		C	MP7130	110 (100–120)	90 (80–100)	_
Acciaio inossidabile duplex	≤280HB	C	VP15TF	110 (100–120)	90 (80–100)	_
		*	MP7130	90 (80–100)	70 (60- 80)	_
		*	VP15TF	90 (80–100)	70 (60- 80)	_
		•	MP7130	120 (110–130)	_	_
		C	MP7130	110 (100–120)	_	_
Acciaio inossidabile temprato per precipitazione	<450HB	C	VP15TF	110 (100–120)	_	_
p. a.c po. procipitazione		*	MP7130	90 (80–100)	_	_
		*	VP15TF	90 (80–100)	_	_

VELOCITÀ DI TAGLIO/TTAGLIO A UMIDO

Matariala	D	Condizioni	0 4	Vc							
Materiale	Durezza	di taglio	Grado -	ae ≥ 0.5 DC	ae ≥ 0.8 DC	ae = DC					
		•	MC5020	170 (150–190)	150 (130–170)	130 (110–150)					
		•	MC5020	160 (140–180)	140 (120–160)	120 (100–140)					
Ghisa grigia	≤350MPa	C	VP15TF	160 (140–180)	140 (120–160)	_					
		*	MC5020	140 (120–160)	120 (100–140)	100 (80–120)					
		*	VP15TF	140 (120–160)	120 (100–140)	100 (80-120)					
		•	MC5020	170 (150–190)	150 (130–170)	130 (110–150)					
		•	MC5020	160 (140–180)	140 (120–160)	120 (100–140)					
Ghisa sferoidale	≤450MPa	•	VP15TF	160 (140–180)	140 (120–160)	_					
		*	MC5020	140 (120–160)	120 (100–140)	100 (80–120)					
		*	VP15TF	140 (120–160)	120 (100–140)	100 (80-120)					
		•	MC5020	160 (150–170)	140(130–150)	120 (110–130)					
	≤800MPa	C	MC5020	150 (140–160)	130 (120–140)	110 (100–120)					
Ghisa sferoidale		C	VP15TF	150 (140–160)	130 (120–140)	_					
		*	MC5020	130 (120–140)	110 (100–120)	90 (80–100)					
		*	VP15TF	130 (120–140)	110 (100–120)	90 (80–100)					
		•	TF15	500 (300–900)	500 (300–900)	500 (300–900)					
Lega di alluminio	Si<5%	C	TF15	500 (300–900)	500 (300–900)	500 (300-900)					
		*	TF15	400 (200–800)	400 (200–800)	400 (200–800)					
		•	MP9120	80 (60–100)	_	_					
Lega di titanio	_	C	MP9120	70 (50- 90)	_	_					
		*	MP9130	60 (40- 80)	_	_					
		•	MP9120	60 (50- 70)	_	_					
ega resistente al calore	_	C	MP9120	50 (30- 60)	_	_					
		*	MP9130	40 (20- 40)	_	_					
Accinia tamprata	40 – 55HRC	0 C	VP15TF	50 (30- 70)	_	_					
Acciaio temprato	40 – DURKU	C	MP6120	40 (30- 70)	_	_					

^{1.} Per scaricare i trucioli in modo efficace, utilizzare aria compressa durante la lavorazione. Se l'aria compressa non è sufficiente per scaricare i trucioli, si consiglia di effettuare il taglio a umido.

^{2.} In caso di vibrazioni, ridurre le condizioni di taglio.

^{3.} Per il taglio interrotto, ridurre del 20 % la velocità di taglio e di avanzamento.

CONDIZIONI DI TAGLIO RACCOMANDATE

PROFONDITÀ DI TAGLIO/AVANZAMENTO PER DENTE

	Materiale	Durezza	Condizioni di taglio	Refrigerante	Grade		ae ≥	0.5 DC		ae ≱	0.8 DC		ae	e = DC
	Materiate	Durezza	Condizio di taglio	Refrig	Grade	~	ар	fz)	ар	fz	\	ар	fz
			•	X •	MP6120	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
			•	X 6	MP6130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
	Acciaio dolce	≤180HB	C	X •	MP6130	R	≤ 3.0	0.16 (0.10-0.20)	R	≤ 3.0	0.16 (0.10-0.20)	_	_	_
			*	X •	MP6130	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
			*	X •	VP15TF	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
	Acciaio al carbonio 180 – Acciaio legato 280HB per utensili		•	X •	MP6120	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
		400	C	X •	MP6130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
			•	X •	MP6130	R	≤ 3.0	0.16 (0.10-0.20)	R	≤ 3.0	0.16 (0.10-0.20)	_	_	
			*	X •	MP6130	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
Р			*	X •	VP15TF	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
-	Acciaio al		•	X •	MP6120	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
	carbonio	280 -	•	X •	MP6130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
	Acciaio legato	350HB	C	X •	MP6130	R	≤ 3.0	0.16 (0.10-0.20)	R	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	Acciaio legato per utensili	≼350HB	*	X •	MP6130	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
	per utensiti		*	X •	VP15TF	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2.0	0.13 (0.10-0.15)
			•	X •	MP6120	М	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	
		25	C	X •	MP6130	М	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	_
	Acciaio pretemprato	35 – 45HRC	C	X •	MP6130	R	≤ 2.0	0.16 (0.10-0.20)	_	_	_	_	_	
	p. sterripi ato	401110	*	X •	MP6130	R	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	_
			*	X 6	VP15TF	R	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	_

PROFONDITÀ DI TAGLIO/AVANZAMENTO PER DENTE

	Materiale Durezza			Refrigerante	Grade		ae 🤅	0.5 DC		ae ≱	: 0.8 DC		ae	e = DC
	Materiale	Durezza	Condizioni di taglio	Refrige	o, auc	~	ар	fz	~	ар	fz	\	ар	fz
			• •	X •	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
		≤200HB	C	X •	VP15TF	М	≤ 3.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
		₹200⊓D	*	X •	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			*	X 6	VP15TF	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			•	×	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			•	•	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
	Acciaio		•	×	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
	inossidabile austenitico		C	•	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
		20011D	•	X	VP15TF	М	≤ 2.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
		>200HB	C	•	VP15TF	М	≤ 3.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
			*	X	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			*	•	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			*	×	VP15TF	М	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			*	•	VP15TF	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
		≤200HB	• •	X 6	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
М	Ferritico e martensitico		C	X 6	VP15TF	M	≤ 3.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	Acciaio		*	X	MP7130	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
	inossidabile		*	X 6	VP15TF	M	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
	Acciaio		• c	X	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			• €	<u> </u>	MP7130	M	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			C	X	VP15TF		≤ 2.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
			C	<u> </u>	VP15TF		≤ 3.0	0.16 (0.10-0.20)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	inossidabile	≤280HB	*	X	MP7130		≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	duplex		*	<u> </u>	MP7130	M	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			*	X	VP15TF	M	≤ 2.0	0.13 (0.10-0.15)	М	≤ 3.0	0.16 (0.10-0.20)	_	_	_
			*	<u> </u>	VP15TF	M	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	_	_	_
			0 0	X	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	_
	Acciaio inossidabile	<450HB	c	X	VP15TF	M	≤ 2.0	0.16 (0.10-0.20)	_	_		_	_	
	temprato per		*	X	MP7130	М	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	_
	precipitazione		*	X	VP15TF	M	≤ 2.0	0.13 (0.10-0.15)	_	_	_	_	_	
				X	MC5020	M		0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М	≤ 2 N	0.13 (0.10-0.15)
			•	X	VP15TF	R	≤ 3.0	0.16 (0.10-0.20)	R	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	Ghisa grigia	≼350MPa	*	X	MC5020	R		0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	R		0.13 (0.10-0.15)
			*	X	VP15TF	R	≤ 3.0	0.13 (0.10-0.15)	R	≤ 3.0	0.13 (0.10-0.15)	R		0.13 (0.10-0.15)
K			• €	X	MC5020	M	≤ 3.0	0.13 (0.10-0.15)	М	≤ 3.0	0.13 (0.10-0.15)	М		0.13 (0.10-0.15)
			•	X	VP15TF	R	≤ 3.0	0.16 (0.10-0.20)	R	≤ 3.0	0.16 (0.10-0.20)	_	_	_
	Ghisa sferoidale	<800MPa	*	X	MC5020	R	≤ 3.0	0.13 (0.10-0.15)	R	< 3.0	0.13 (0.10-0.15)	R		0.13 (0.10-0.15)
			*	X	VP15TF	R		0.13 (0.10-0.15)	R	€ 3.0	0.13 (0.10-0.15)	R		0.13 (0.10-0.15)
			• €		MP9120	M		0.10 (0.05-0.13)	_	₹ 5.0		_	< ∠.U	
	Lega di titanio	_	*	<u> </u>	MP9130	M	€ 2.0	0.10 (0.05-0.13)						
S			• €		MP9130 MP9120	М М		0.10 (0.05-0.13)		_		_	_	
	Lega resistente al calore	_		<u> </u>				0.10 (0.05-0.13)		_	_	_	_	-
	at cutore		*	*	MP9130	M M	≤ 2.0		_	_		_	_	_
	Appinio tamana	/0 EEUDO	•	X •	VP15TF		≤ 2.0	0.05 (0.05-0.10)	_		_	_	_	
Н	Acciaio temprato	4U – 55HKC	•	X •	VP15TF	R	≤ 2.0	0.05 (0.05-0.10)	_	_		_	_	
			•	X •	MP6120	R	≤ 2.0	0.05 (0.05-0.10)	_	_	_	_	_	_

Condizioni di taglio raccomandate

NEW

Nuovo/Espansione dei prodotti

APPLICAZIONE

Fresatura in spianatura

Fresatura a smusso

Fresatura in spallamento con raggio

Spianatura con pareti a 90°

Fresatura in spallamento

Fresatura in spallamento

Fresatura di cave

Copiatura

Lavorazione in rampa

Fresatura di cave con raggio

Fresatura in copiatura

Fresatura di cave a T

TIPO DI APPLICAZIONE

Sgrossatura

Media asportazione

Taglio leggero

Semifinitura

Finitura

Super finitura

MATERIALE DELL'UTENSILE

Carburo sub-micron grana

Il substrato utilizzato è carburo sub-micron grana.

Nitruro cubico di boro

Impiego di CBN di produzione Mitsubishi Materials.

Ceramica

Garantisce la lavorazione di super leghe a base nichel ad alta velocità ed elevata efficienza grazie alla straordinaria resistenza alle alte temperature.

Acciaio super rapido prodotto

per sinterizzazione ad elevata durezza

ll substrato utilizzato è acciaio super rapido prodotto da sinterizzazione di polveri ad elevata durezza.

Acciaio super rapido di grado superiore superiore

Il substrato utilizzato è acciaio super rapido di grado superiore.

Acciaio super rapido al cobalto

Il substrato utilizzato è acciaio super rapido al cobalto.

Acciaio super rapido

Il substrato utilizzato è acciaio super rapido.

RIVESTIMENTO

Rivestimento SMART MIRACLE

Nuova tecnologia di rivestimento, per la fresatura ad alta efficienza di materiali difficili da lavorare.

Rivestimento CrN

Nuovo rivestimento CrN per lavorazione di elettrodi in rame.

Rivestimento VIOLET

Durata di vita dell'utensile 2-3 volte superiore a quella dei prodotti rivestiti in TiN.

Rivestimento DP

Rivestimento di nuova generazione adatto ad ogni materiale

Rivestimento MIRACLE

L'originale rivestimento MIRACLE in (Al,Ti)N.

MS Rivestimento (Al,Ti)N

Il rivestimento (Al,Ti)N offre una elevata versatilità.

Rivestimento multistrato (Al, Ti, Cr)N

Offre una elevata versatilità per acciaio al carbonio, acciaio legato e acciaio temprato.

Rivestimento IMPACT MIRACLE

Tecnologia di rivestimento monofase in nanocristalli per maggiore durezza della pellicola e maggiore resistenza al calore

Rivestimento MIRACLE

L'originale rivestimento MIRACLE (Al,Ti)N. Idoneo anche per il taglio a secco.

Rivestimento VFR

Il rivestimento AlCrS In (multistrato PVD) è ideale per la lavorazione di materiali fino a 70 HRC di durezza.

Rivestimento DLC

Durezza simile a quella di un rivestimento al diamante CVD ottenuta grazie ad una elevata forza di adesione.

Rivestimento in diamante

Idoneo per la lavorazione di materiali come CFRP e CFRP-Alluminio.

Rivestimento in diamante

Idoneo per la lavorazione di grafite.

Rivestimento in diamante

Originale rivestimento CVD in diamante. Utilizzabile anche per la foratura di CFRP.

Rivestimento in diamante CVD

L'esclusiva tecnologia di controllo del cristallo di diamante a micrograni multistrato migliora drasticamente la resistenza all'usura e l'attrito durante il taglio.

CARATTERISTICHE

Spigolo vivo

Indica che la fresa integrale è dotata di spigolo vivo a 90°

Tagliente rinforzato

Indica che la fresa integrale è dotata di smusso di rinforzo sullo spigolo.

Angolo di spoglia

Indica l'angolo di spoglia della fresa integrale.

Angolo di inclinazione dell'elica

Indica l'angolo dell'elica della fresa integrale.

Angolo di cuspide

Indica l'angolo sul vertice della punta. Nell'esempio viene mostrato un angolo di 140°.

Elica per sgrossatura

Elica variabile

Scarico arrotondato

Angolo di registro dell'utensile

Nell'esempio è mostrato un angolo di 90°.

ASSOTTIGLIAMENTO DEL NOCCIOLO

Tipo X

Assottigliamento del nocciolo X usato sul vertice della punta.

Tipo XR

Assottigliamento del nocciolo XR usato sul vertice della punta.

Cipo S

Il taglio è facile. Questa è la geometria più comunemente usata.

Tipo N

Utilizzato quando il nocciolo è particolarmente sottile.

Rompitruciolo

TOLLERANZA

Tolleranza dell'angolo di conicità

Indica la tolleranza dell'angolo di conicità.

Tolleranza R

Indica la tolleranza sul raggio della fresa integrale semisferica.

Tolleranza R

Indica la tolleranza del raggio torico della fresa integrale.

Tolleranza R

Indica la tolleranza radiale del raggio torico convesso della fresa integrale.

Tolleranza del diametro esterno

Indica la tolleranza del diametro della fresa integrale.

Tagliente ad elica conica

Tolleranza diametrale dello stelo

Indica la tolleranza diametrale dello stelo.

Tolleranza diametrale dello stelo

Indica la tolleranza diametrale dello stelo.

Tolleranza diametrale della punta

PASSAGGIO LUBROREFRIGERANTE

Refrigerante esterno

Refrigerante interno

Refrigerante interno

Foro per passaggio lubrorefrigerante centrale

Fori radiali per passagio del lubrorefrigerante attraverso l'utensile

Fori interni per il passaggio del lubrorefrigerante

Fori interni per il passaggio del lubrorefrigerante

AMITSUBISHI MATERIALS CORPORATION

GERMANY

MMC HARTMETALL GMBH
Comeniusstr. 2 . 40670 Meerbusch
Phone +49 2159 91890 . Fax +49 2159 918966
Email admin@mmchg.de

U.K.

MMC HARDMETAL U.K. LTD.

Mitsubishi House . Galena Close . Tamworth . Staffs. B77 4AS

Phone +44 1827 312312

Email sales@mitsubishicarbide.co.uk

SPAIN

MITSUBISHI MATERIALS ESPAÑA, S.A. Calle Emperador 2 . 46136 Museros/Valencia Phone +34 96 1441711 . Fax +34 96 1443786 Email comercial@mmevalencia.es

FRANCE

MMC METAL FRANCE S.A.R.L.
6, Rue Jacques Monod . 91400 Orsay
Phone +33 1 69 35 53 53 . Fax +33 1 69 35 53 50
Email mmfsales@mmc-metal-france.fr

POLAND

MMC HARDMETAL POLAND SP. Z 0.0 Al. Armii Krajowej 61 . 50 - 541 Wrocław Phone +48 71335 1620 . Fax +48 71335 1621 Email sales@mitsubishicarbide.com.pl

ITALY

MMC ITALIA S.R.L.
Viale Certosa 144 . 20156 Milano
Phone +39 0293 77031 . Fax +39 0293 589093
Email info@mmc-italia.it

TURKEY

MMC HARTMETALL GMBH ALMANYA - İZMİR MERKEZ ŞUBESİ Adalet Mahallesi Anadolu Caddesi No: 41-1 . 15001 35530 Bayraklı/İzmir Phone +90 232 5015000 . Fax +90 232 5015007 Email info@mmchg.com.tr

www.mitsubishicarbide.com | www.mmc-hardmetal.com

Codice ordinazione: N0331

Pubblicato: 2023.04 (2.15 LD), Stampato in Germania